Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-28T08:56:30.966Z Has data issue: false hasContentIssue false

Ndc80 Regulates Meiotic Spindle Organization, Chromosome Alignment, and Cell Cycle Progression in Mouse Oocytes

Published online by Cambridge University Press:  10 May 2011

Shao-Chen Sun
Affiliation:
Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
Ding-Xiao Zhang
Affiliation:
Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
Seung-Eun Lee
Affiliation:
Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
Yong-Nan Xu
Affiliation:
Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
Nam-Hyung Kim*
Affiliation:
Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
*
Corresponding author. E-mail: nhkim@chungbuk.ac.kr
Get access

Abstract

Ndc80 (called Hec1 in human), the core component of the Ndc80 complex, is involved in regulation of both kinetochore-microtubule interactions and the spindle assembly checkpoint in mitosis; however, its role in meiosis remains unclear. Here, we report Ndc80 expression, localization, and possible functions in mouse oocyte meiosis. Ndc80 mRNA levels gradually increased during meiosis. Immunofluorescent staining showed that Ndc80 was restricted to the germinal vesicle and associated with spindle microtubules from the Pro-MI to MII stages. Ndc80 was localized on microtubules and asters in the cytoplasm after taxol treatment, while Ndc80 staining was diffuse after disruption of microtubules by nocodazole treatment, confirming its microtubule localization. Disruption of Ndc80 function by either siRNA injection or antibody injection resulted in severe chromosome misalignment, spindle disruption, and precocious polar body extrusion. Our data show a unique localization pattern of Ndc80 in mouse oocytes and suggest that Ndc80 may be required for chromosome alignment and spindle organization, and may regulate spindle checkpoint activity during mouse oocyte meiosis.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asakawa, H., Hayashi, A., Haraguchi, T. & Hiraoka, Y. (2005). Dissociation of the Nuf2-Ndc80 complex releases centromeres from the spindle-pole body during meiotic prophase in fission yeast. Mol Biol Cell 16(5), 23252338.Google Scholar
Bharadwaj, R., Qi, W. & Yu, H. (2004). Identification of two novel components of the human NDC80 kinetochore complex. J Biol Chem 279(13), 1307613085.CrossRefGoogle ScholarPubMed
Cheeseman, I.M., Chappie, J.S., Wilson-Kubalek, E.M. & Desai, A. (2006). The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127(5), 983997.Google Scholar
Cheeseman, I.M., Niessen, S., Anderson, S., Hyndman, F., Yates, J.R. 3rd, Oegema, K. & Desai, A. (2004). A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev 18(18), 22552268.CrossRefGoogle ScholarPubMed
Chen, Y., Riley, D.J., Chen, P.L. & Lee, W.H. (1997). HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Mol Cell Biol 17(10), 60496056.CrossRefGoogle Scholar
Ciferri, C., Musacchio, A. & Petrovic, A. (2007). The Ndc80 complex: Hub of kinetochore activity. FEBS Lett 581(15), 28622869.Google Scholar
Compton, D.A. (1998). Focusing on spindle poles. J Cell Sci 111(Pt 11), 14771481.Google Scholar
DeLuca, J.G., Dong, Y., Hergert, P., Strauss, J., Hickey, J.M., Salmon, E.D. & McEwen, B.F. (2005). Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol Biol Cell 16(2), 519531.Google Scholar
DeLuca, J.G., Gall, W.E., Ciferri, C., Cimini, D., Musacchio, A. & Salmon, E.D. (2006). Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127(5), 969982.CrossRefGoogle ScholarPubMed
DeLuca, J.G., Howell, B.J., Canman, J.C., Hickey, J.M., Fang, G. & Salmon, E.D. (2003). Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr Biol 13(23), 21032109.Google Scholar
DeLuca, J.G., Moree, B., Hickey, J.M., Kilmartin, J.V. & Salmon, E.D. (2002). hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J Cell Biol 159(4), 549555.Google Scholar
Desai, A., Rybina, S., Muller-Reichert, T., Shevchenko, A., Shevchenko, A., Hyman, A. & Oegema, K. (2003). KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev 17(19), 24212435.CrossRefGoogle ScholarPubMed
De Wulf, P., McAinsh, A.D. & Sorger, P.K. (2003). Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev 17(23), 29022921.Google Scholar
Diaz-Rodriguez, E., Sotillo, R., Schvartzman, J.M. & Benezra, R. (2008). Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc Natl Acad Sci USA 105(43), 1671916724.Google Scholar
Gillett, E.S., Espelin, C.W. & Sorger, P.K. (2004). Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J Cell Biol 164(4), 535546.Google Scholar
Guimaraes, G.J., Dong, Y., McEwen, B.F. & Deluca, J.G. (2008). Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr Biol 18(22), 17781784.Google Scholar
Hori, T., Haraguchi, T., Hiraoka, Y., Kimura, H. & Fukagawa, T. (2003). Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. J Cell Sci 116(Pt 16), 33473362.Google Scholar
Janke, C., Ortiz, J., Lechner, J., Shevchenko, A., Shevchenko, A., Magiera, M.M., Schramm, C. & Schiebel, E. (2001). The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. Embo J 20(4), 777791.Google Scholar
Joglekar, A.P., Bloom, K.S. & Salmon, E.D. (2010). Mechanisms of force generation by end-on kinetochore-microtubule attachments. Curr Opin Cell Biol 22(1), 5767.Google Scholar
Kemmler, S., Stach, M., Knapp, M., Ortiz, J., Pfannstiel, J., Ruppert, T. & Lechner, J. (2009). Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling. Embo J 28(8), 10991110.CrossRefGoogle ScholarPubMed
Kline-Smith, S.L., Sandall, S. & Desai, A. (2005). Kinetochore-spindle microtubule interactions during mitosis. Curr Opin Cell Biol 17(1), 3546.CrossRefGoogle ScholarPubMed
Le Masson, I., Saveanu, C., Chevalier, A., Namane, A., Gobin, R., Fromont-Racine, M., Jacquier, A. & Mann, C. (2002). Spc24 interacts with Mps2 and is required for chromosome segregation, but is not implicated in spindle pole body duplication. Mol Microbiol 43(6), 14311443.Google Scholar
Lin, S.L., Qi, S.T., Sun, S.C., Wang, Y.P., Schatten, H. & Sun, Q.Y. (2010). PAK1 regulates spindle microtubule organization during oocyte meiotic maturation. Front Biosci (Elite Ed.) 2, 12541264.Google ScholarPubMed
Maro, B., Howlett, S.K. & Webb, M. (1985). Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J Cell Biol 101(5Pt 1), 16651672.CrossRefGoogle ScholarPubMed
Martin-Lluesma, S., Stucke, V.M. & Nigg, E.A. (2002). Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297(5590), 22672270.CrossRefGoogle ScholarPubMed
McCleland, M.L., Gardner, R.D., Kallio, M.J., Daum, J.R., Gorbsky, G.J., Burke, D.J. & Stukenberg, P.T. (2003). The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev 17(1), 101114.Google Scholar
McCleland, M.L., Kallio, M.J., Barrett-Wilt, G.A., Kestner, C.A., Shabanowitz, J., Hunt, D.F., Gorbsky, G.J. & Stukenberg, P.T. (2004). The vertebrate Ndc80 complex contains Spc24 and Spc25 homologs, which are required to establish and maintain kinetochore-microtubule attachment. Curr Biol 14(2), 131137.Google Scholar
Miller, S.A., Johnson, M.L. & Stukenberg, P.T. (2008). Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr Biol 18(22), 17851791.Google Scholar
Nabetani, A., Koujin, T., Tsutsumi, C., Haraguchi, T. & Hiraoka, Y. (2001). A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: A link between the kinetochore function and the spindle checkpoint. Chromosoma 110(5), 322334.Google Scholar
Tanaka, T.U. & Desai, A. (2008). Kinetochore-microtubule interactions: The means to the end. Curr Opin Cell Biol 20(1), 5363.Google Scholar
Tien, J.F., Umbreit, N.T., Gestaut, D.R., Franck, A.D., Cooper, J., Wordeman, L., Gonen, T., Asbury, C.L. & Davis, T.N. (2010). Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. J Cell Biol 189(4), 713723.Google Scholar
Wei, R.R., Al-Bassam, J. & Harrison, S.C. (2007). The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 14(1), 5459.Google Scholar
Wigge, P.A. & Kilmartin, J.V. (2001). The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152(2), 349360.Google Scholar
Xiong, B., Li, S., Ai, J.S., Yin, S., Ouyang, Y.C., Sun, S.C., Chen, D.Y. & Sun, Q.Y. (2008). BRCA1 is required for meiotic spindle assembly and spindle assembly checkpoint activation in mouse oocytes. Biol Reprod 79(4), 718726.Google Scholar
Yuan, J., Li, M., Wei, L., Yin, S., Xiong, B., Li, S., Lin, S.L., Schatten, H. & Sun, Q.Y. (2009). Astrin regulates meiotic spindle organization, spindle pole tethering and cell cycle progression in mouse oocytes. Cell Cycle 8(20), 33843395.CrossRefGoogle ScholarPubMed
Zheng, L., Chen, Y. & Lee, W.H. (1999). Hec1p, an evolutionarily conserved coiled-coil protein, modulates chromosome segregation through interaction with SMC proteins. Mol Cell Biol 19(8), 54175428.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Shao-Chen Sun Supplementary Image

Shao-Chen Sun Supplementary Image

Download Shao-Chen Sun Supplementary Image(Image)
Image 126.6 KB