Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T12:24:39.776Z Has data issue: false hasContentIssue false

The Near Edge Structure of Hexagonal Boron Nitride

Published online by Cambridge University Press:  23 April 2014

Nicholas L. McDougall*
Affiliation:
Department of Physics, School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Victoria 3001, Australia
Rebecca J. Nicholls
Affiliation:
Department of Materials, University of Oxford, Parks Rd, Oxford, Oxfordshire, OX1 3PH, UK
Jim G. Partridge
Affiliation:
Department of Physics, School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Victoria 3001, Australia
Dougal G. McCulloch
Affiliation:
Department of Physics, School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Victoria 3001, Australia
*
*Corresponding author.nicholas.mcdougall@rmit.edu.au
Get access

Abstract

Hexagonal boron nitride (hBN) is a promising material for a range of applications including deep-ultraviolet light emission. Despite extensive experimental studies, some fundamental aspects of hBN remain unknown, such as the type of stacking faults likely to be present and their influence on electronic properties. In this paper, different stacking configurations of hBN are investigated using CASTEP, a pseudopotential density functional theory code. AB-b stacking faults, in which B atoms are positioned directly on top of one another while N atoms are located above the center of BN hexagons, are shown to be likely in conventional AB stacked hBN. Bandstructure calculations predict a single direct bandgap structure that may be responsible for the discrepancies in bandgap type observed experimentally. Calculations of the near edge structure showed that different stackings of hBN are distinguishable using measurements of core-loss edges in X-ray absorption and electron energy loss spectroscopy. AB stacking was found to best reproduce features in the experimental B and N K-edges. The calculations also show that splitting of the 1s to π* peak in the B K-edge, recently observed experimentally, may be accounted for by the presence of AB-b stacking faults.

Type
FEMMS Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arenal, R., Kociak, M. & Zaluzec, N.J. (2007). High-angular-resolution electron energy loss spectroscopy of hexagonal boron nitride. Appl Phys Lett 90(20), 204105.Google Scholar
Berns, D.H., Cappelli, M.A. & Shuh, D.K. (1997). Near-edge X-ray absorption fine structure spectroscopy of arcjet-deposited cubic boron nitride. Diam Relat Mater 6(12), 18831886.CrossRefGoogle Scholar
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K. & Payne, M.C. (2005). First principles methods using CASTEP. Z Kristallogr 220(5–6), 567570.Google Scholar
Constantinescu, G., Kuc, A. & Heine, T. (2013). Stacking in bulk and bilayer hexagonal boron nitride. Phys Rev Lett 111(3), 036104.Google Scholar
Daniels, H., Brown, A., Scott, A., Nichells, T., Rand, B. & Brydson, R. (2003). Experimental and theoretical evidence for the magic angle in transmission electron energy loss spectroscopy. Ultramicroscopy 96(3–4), 523534.Google Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.Google Scholar
Gao, S.P., Pickard, C.J., Perlov, A. & Milman, V. (2009). Core-level spectroscopy calculation and the plane wave pseudopotential method. J Phys Condens Matter 21(10), 104203.Google Scholar
Hebert, C., Jouffrey, B. & Schattschneider, P. (2004). Comment on "Experimental and theoretical evidence for the magic angle in transmission electron energy loss spectroscopy" by H. Daniels, A. Brown, A. Scott, T. Nichells, B. Rand and R. Brydson. Ultramicroscopy 101 (2–4), 271273.Google Scholar
Hebert, C., Schattschneider, P., Franco, H. & Jouffrey, B. (2006). ELNES at magic angle conditions. Ultramicroscopy 106(11–12), 11391143.Google Scholar
Kim, C.J., Brown, L., Graham, M.W., Hovden, R., Havener, R.W., Mceuen, P.L., Muller, D.A. & Park, J. (2013). Stacking order dependent second harmonic generation and topological defects in h-BN bilayers. Nano Lett 13(11), 56605665.CrossRefGoogle ScholarPubMed
Li, L.H., Li, L., Dai, X.J.J. & Chen, Y. (2013). Atomically thin boron nitride nanodisks. Mater Lett 106, 409412.Google Scholar
Li, L.H., Petravic, M., Cowie, B.C.C., Xing, T., Peter, R., Chen, Y., Si, C. & Duan, W.H. (2012). High-resolution x-ray absorption studies of core excitons in hexagonal boron nitride. Appl Phys Lett 101(19), 191604.Google Scholar
Liu, L., Feng, Y.P. & Shen, Z.X. (2003). Structural and electronic properties of h-BN. Phys Rev B 8(10), 104102.Google Scholar
Majety, S., Cao, X.K., Li, J., Dahal, R., Lin, J.Y. & Jiang, H.X. (2012). Band-edge transitions in hexagonal boron nitride epilayers. Appl Phys Lett 101(5), 051110.Google Scholar
Mcculloch, D.G., Lau, D.W.M., Nicholls, R.J. & Perkins, J.M. (2012). The near edge structure of cubic boron nitride. Micron 43(1), 4348.Google Scholar
Meyer, J.C., Chuvilin, A., Algara-Siller, G., Biskupek, J. & Kaiser, U. (2009). Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett 9(7), 26832689.Google Scholar
Mirkarimi, P.B., Mccarty, K.F. & Medlin, D.L. (1997). Review of advances in cubic boron nitride film synthesis. Mater Sci Eng R 21(2), 47100.CrossRefGoogle Scholar
Monkhorst, H.J. & Pack, J.D. (1976). Special points for brillouin-zone integrations. Phys Rev B 13(12), 51885192.CrossRefGoogle Scholar
Nebel, C.E. (2009). Tackling the deep ultraviolet. Nat Photonics 3(10), 564566.CrossRefGoogle Scholar
Nicholls, R.J., Morris, A.J., Pickard, C.J. & Yates, J.R. (2012). OptaDOS – a new tool for EELS calculations. J Phys Conf Ser, 371, 012062.Google Scholar
Peter, R., Bozanic, A., Petravic, M., Chen, Y., Fan, L.J. & Yang, Y.W. (2009). Formation of defects in boron nitride by low energy ion bombardment. J Appl Phys 106(8), 083523.Google Scholar
Riedel, R. (1994). Novel ultrahard materials. Adv Mater 6(7–8), 549560.Google Scholar
Shmeliov, A., Kim, J.S., Borisenko, K.B., Wang, P., Okunishi, E., Shannon, M., Kirkland, A.I., Nellist, P.D. & Nicolosi, V. (2013). Impurity induced non-bulk stacking in chemically exfoliated h-BN nanosheets. Nanoscale 5(6), 22902294.CrossRefGoogle ScholarPubMed
Solozhenko, V.L., Lazarenko, A.G., Petitet, J.P. & Kanaev, A.V. (2001). Bandgap energy of graphite-like hexagonal boron nitride. J Phys Chem Solids 62(7), 13311334.Google Scholar
Song, L., Ci, L.J., Lu, H., Sorokin, P.B., Jin, C.H., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I. & Ajayan, P.M. (2010). Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10(8), 32093215.CrossRefGoogle ScholarPubMed
Stöhr, J. (1992). NEXAFS Spectroscopy. New York: Springer-Verlag.Google Scholar
Tanaka, I., Araki, H., Yoshiya, M., Mizoguchi, T., Ogasawara, K. & Adachi, H. (1999). First-principles calculations of electron-energy-loss near-edge structure and near-edge x-ray-absorption fine structure of BN polytypes using model clusters. Phy Rev B 60(7), 49444951.Google Scholar
Wang, H.B., LI, Q., Cui, T., Ma, Y.M. & Zou, G.T. (2009). Phase-transition mechanism of h-BN –> w-BN from first principles. Solid State Commun 149(21–22), 843846.Google Scholar
Warner, J.H., Rummeli, M.H., Bachmatiuk, A. & Buchner, B. (2010). Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano 4(3), 12991304.CrossRefGoogle ScholarPubMed
Watanabe, K., Taniguchi, T. & Kanda, H. (2004). Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3(6), 404409.Google Scholar
Watanabe, K., Taniguchi, T., Kuroda, T. & Kanda, H. (2006). Effects of deformation on band-edge luminescence of hexagonal boron nitride single crystals. Appl Phys Lett 89(14), 141902.CrossRefGoogle Scholar
Watanabe, K., Taniguchi, T., Niiyama, T., Miya, K. & Taniguchi, M. (2009). Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat Photonics 3(10), 591594.Google Scholar
Watanabe, S., Miyake, S. & Murakawa, M. (1991). Tribological properties of cubic, amorphous and hexagonal boron nitride films. Surf Coat Technol 49(1–3), 406410.Google Scholar
Yin, J.L., Hu, M.L., Yu, Z.Z., Zhang, C.X., Sun, L.Z. & Zhong, J.X. (2011). Direct or indirect semiconductor: The role of stacking fault in h-BN. Phys B 406(11), 22932297.Google Scholar