Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T22:18:33.486Z Has data issue: false hasContentIssue false

NeXL: A Platform for Innovation in Microanalysis

Published online by Cambridge University Press:  30 July 2021

Nicholas Ritchie
Affiliation:
National Institute of Standards & Technology, Gaithersburg, Maryland, United States
Dale Newbury
Affiliation:
National Institute of Standards & Technology, Gaithersburg, Maryland, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Unresolved Challenges in Quantitative X-ray Microanalysis
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM review, 59(1), 65-98.Google Scholar
Hornik, Stinchcombe & White, (1989) Multilayer Feedforward Networks are Universal Approximators Neural Networks, Vol. 2, pp. 359-366.Google Scholar
Innes, M. (2018). Flux: Elegant machine learning with Julia. Journal of Open Source Software, 3(25), 602.Google Scholar
Gopon, P., Fournelle, J., Sobol, P. E., & Llovet, X. (2013). Low-voltage electron-probe microanalysis of Fe-Si compounds using soft X-rays. Microscopy and Microanalysis, 19(6), 1698.Google ScholarPubMed
Llovet, X., Pinard, P. T., Heikinheimo, E., Louhenkilpi, S., & Richter, S. (2016). Electron probe microanalysis of Ni silicides using Ni-L X-ray lines. Microscopy and Microanalysis, 22(6), 1233-1243.CrossRefGoogle ScholarPubMed
Pouchou, J. L., & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In Electron probe quantitation (pp. 31-75). Springer, Boston, MA.CrossRefGoogle Scholar