Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T14:02:01.926Z Has data issue: false hasContentIssue false

Observations on the Early Stages of Corrosion on AA2099-T83

Published online by Cambridge University Press:  09 June 2020

A. Matthew Glenn
Affiliation:
CSIRO, Mineral Resources, Bayview Ave, Clayton, 3169 VIC, Australia
Anthony E. Hughes*
Affiliation:
CSIRO, Mineral Resources, Bayview Ave, Clayton, 3169 VIC, Australia Institute of Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
Colin M. MacRae
Affiliation:
CSIRO, Mineral Resources, Bayview Ave, Clayton, 3169 VIC, Australia
Nicholas C. Wilson
Affiliation:
CSIRO, Mineral Resources, Bayview Ave, Clayton, 3169 VIC, Australia
Aaron Torpy
Affiliation:
CSIRO, Mineral Resources, Bayview Ave, Clayton, 3169 VIC, Australia
Xiaorong Zhou
Affiliation:
Corrosion and Protection Centre, School of Materials, The University of Manchester, ManchesterM13 9PL, UK
*
*Author for correspondence: Anthony E. Hughes, E-mail: tony.hughes@csiro.au
Get access

Abstract

An Al–Cu–Li aerospace alloy has been investigated to determine the order in which corrosion at different types of sites occurs in AA2099-T83. Specifically, the sequence of galvanic attack on intermetallic (IM) particles and other sites of AA2099-T83 was determined as a function of time, in 0.1 M NaCl, through the use of scanning electron microscopy and electron backscatter diffraction characterization techniques. The earliest attack occurred at isolated grains and grain boundaries and on Li-containing dispersoids. Similarly, some constituent IM particles showed evidence of trenching in the surrounding alloy matrix. These IM particles included Al7Cu2Fe and another group of unidentified particles which displayed complete trenching within the first 10 min of exposure. Al13(Fe, Mn)4 were next most active followed by Al37Fe12Cu2 with Al6(Fe,Mn) and large TiB2 particles being the least active.

Type
Australian Microbeam Analysis Society Special Section AMAS XV 2019
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, MR, Thompson, GE & Beamson, G (2000). Characterization of the oxide/hydroxide surface of aluminum using X-ray photoelectron spectroscopy: A procedure for curve fitting the O 1s core level. Surf Interface Anal 29(7), 468477.3.0.CO;2-V>CrossRefGoogle Scholar
Andreatta, F, Druart, ME, Marin, E, Cossement, D, Olivier, MG & Fedrizzi, L (2014). Volta potential of clad AA2024 aluminium after exposure to CeCl3 solution. Corros Sci 86, 189201.CrossRefGoogle Scholar
Birbilis, N, Cavanaugh, MK & Buchheit, RG (2006). Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651. Corros Sci 48(12), 42024215.CrossRefGoogle Scholar
Birbilis, N, Zhu, YM, Kairy, SK, Glenn, MA, Nie, JF, Morton, AJ, Gonzalez-Garcia, Y, Terryn, H, Mol, JMC & Hughes, AE (2016). A closer look at constituent induced localised corrosion in Al-Cu-Mg alloys. Corros Sci 113, 160171.CrossRefGoogle Scholar
Boag, A, Hughes, AE, Glenn, AM, Muster, TH & McCulloch, D (2011). Corrosion of AA2024-T3 Part I. Localised corrosion of isolated IM particles. Corros Sci 53(1), 1726.CrossRefGoogle Scholar
Buchheit, RG (2000). The electrochemistry of theta (Al2Cu), S (Al2CuMg) and T-1 (Al2CuLi) and localized corrosion and environment assisted cracking in high strength Al alloys. In Aluminium Alloys: Their Physical and Mechanical Properties, Pts 1–3, Vol. 331–333, Starke, EA, Sanders, TH & Cassada, WA (Eds.), pp. 16411646. Stafa-Zurich: Trans Tech Publications.Google Scholar
Buchheit, RG, Moran, JP & Stoner, GE (1994). Electrochemical-behavior of the T-1 (Al2culi) intermetallic compound and its role in localized corrosion of Al-2-percent-Li-3-percent-Cu alloys. Corrosion 50(2), 120130.CrossRefGoogle Scholar
Campestrini, P, Van Westing, EPM, Van Rooijen, HW & De Wit, JHW (2000). Relation between microstructural aspects of AA2024 and its corrosion behaviour investigated using AFM scanning potential technique. Corros Sci 42(11), 18531861.CrossRefGoogle Scholar
Carrick, DM, Hogg, SC & Wilcox, GD (2013). Corrosion of an advanced Al-Cu-Li alloy for aerospace applications. Mater Sci Forum 765, 629633.CrossRefGoogle Scholar
Cheng, YL, Zhang, Z, Cao, FH, Li, JF, Zhang, JQ, Wang, JM & Cao, CN (2004). A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corros Sci 46(7), 16491667.CrossRefGoogle Scholar
Clark, WJ, Ramsey, JD, McCreery, RL & Frankel, GS (2002). A galvanic corrosion approach to investigating chromate effects on aluminum alloy 2024-T3. J Electrochem Soc 149(5), B179B185.CrossRefGoogle Scholar
Davies, JR (1999). Corrosion of Aluminium and Aluminium Alloys. Columbus, OH: ASM International.CrossRefGoogle Scholar
Davo, B, Conde, A & de Damborenea, JJ (2005). Inhibition of stress corrosion cracking of alloy AA8090 T-8171 by addition of rare earth salts. Corros Sci 47(5), 12271237.CrossRefGoogle Scholar
Davo, B & de Damborenea, JJ (2004). Use of rare earth salts as electrochemical corrosion inhibitors for an Al-Li-Cu (8090) alloy in 3.56% NaCl. Electrochimica Acta 49(27), 49574965.CrossRefGoogle Scholar
Dursun, T & Soutis, C (2014). Recent developments in advanced aircraft aluminium alloys. Mater Des 56, 862871.CrossRefGoogle Scholar
Galvele, JR & Demichel, SM (1970). Mechanism of intergranular corrosion of AL-CU alloys. Corros Sci 10(11), 795–807.CrossRefGoogle Scholar
Garrard, WN (1994). Corrosion behavior of aluminum-lithium alloys. Corrosion 50(3), 215225.CrossRefGoogle Scholar
Glenn, AM, Hughes, AE, Muster, TH, Lau, D, Wilson, NC, Torpy, A, MacRae, CM & Ward, J (2013). Investigation into the influence of carbon contamination on the corrosion behavior of aluminum microelectrodes and AA2024-T3. J Electrochem Soc 160(3), C119C127.CrossRefGoogle Scholar
Guérin, M, Alexis, J, Andrieu, E, Blanc, C & Odemer, G (2015). Corrosion-fatigue lifetime of aluminium–copper–lithium alloy 2050 in chloride solution. Mater Des 87, 681692.CrossRefGoogle Scholar
Guérin, M, Alexis, J, Andrieu, E, Laffont, L, Lefebvre, W, Odemer, G & Blanc, C (2016). Identification of the metallurgical parameters explaining the corrosion susceptibility in a 2050 aluminium alloy. Corros Sci 102, 291300.CrossRefGoogle Scholar
Guérin, M, Andrieu, E, Odemer, G, Alexis, J & Blanc, C (2014 a). Effect of the microstructure and environmental exposure conditions on the corrosion behaviour of the 2050 alloy. Mater Sci Forum 794–796, 205210.CrossRefGoogle Scholar
Guérin, M, Andrieu, E, Odemer, G, Alexis, J & Blanc, C (2014 b). Effect of varying conditions of exposure to an aggressive medium on the corrosion behavior of the 2050 Al-Cu-Li alloy. Corros Sci 85, 455470.CrossRefGoogle Scholar
Hughes, AE, Birbilis, N, Mol, JMC, Garcia, SJ, Zhou, X & Thompson, GE (2011 a). High strength Al-alloys: Microstructure, corrosion and principles of protection. In Recent Trends in Processing and Degradation of Aluminium Alloys. ed. Z. Ahmad. Rijeka, Intech Publishing.Google Scholar
Hughes, AE, Boag, A, Glenn, AM, McCulloch, D, Muster, TH, Ryan, C, Luo, C, Zhou, X & Thompson, GE (2011 b). Corrosion of AA2024-T3 Part II co-operative corrosion. Corros Sci 53(1), 2739.CrossRefGoogle Scholar
Ilevbare, GO, Schneider, O, Kelly, RG & Scully, JR (2004). In situ confocal laser scanning microscopy of AA 2024-T3 corrosion metrology – I. Localized corrosion of particles. J Electrochem Soc 151(8), B453B464.CrossRefGoogle Scholar
Lau, D, Hughes, AE, Muster, TH, Davis, TJ & Glenn, AM (2010). Electron-beam-induced carbon contamination on silicon: Characterization using raman spectroscopy and atomic force microscopy. Microsc Microanal 16(1), 1320.CrossRefGoogle ScholarPubMed
Leblanc, P & Frankel, GS (2002). A study of corrosion and pitting initiation of AA2024-T3 using atomic force microscopy. J Electrochem Soc 149(6), B239B247.CrossRefGoogle Scholar
Li, JF, Birbilis, N, Liu, DY, Chen, YL, Zhang, XH & Cai, C (2016). Intergranular corrosion of Zn-free and Zn-microalloyed Al–xCu–yLi alloys. Corros Sci 105, 4457.CrossRefGoogle Scholar
Liu, XD, Zhang, WL, Frankel, GS, Zoofan, B & Rokhlin, S (2001). Effect of stress on penetration of intergranular corrosion in aluminum alloys; Transition of IGC to IGSCC.Google Scholar
Liu, Y, Laurino, A, Hashimoto, T, Zhou, X, Skeldon, P, Thompson, GE, Scamans, GM, Blanc, C, Rainforth, WM & Frolish, MF (2010). Corrosion behaviour of mechanically polished AA7075-T6 aluminium alloy. Surf Interface Anal 42(4), 185188.CrossRefGoogle Scholar
Liu, Y, Zhou, X, Thompson, GE, Hashimoto, T, Scamans, GM & Afseth, A (2007). Precipitation in an AA6111 aluminium alloy and cosmetic corrosion. Acta Mater 55(1), 353360.CrossRefGoogle Scholar
Luo, C, Albu, SP, Zhou, X, Sun, Z, Zhang, X, Tang, Z & Thompson, GE (2016a). Continuous and discontinuous localized corrosion of a 2xxx aluminium-copper-lithium alloy in sodium chloride solution. J Alloys Compd 658, 6170.CrossRefGoogle Scholar
Luo, C, Zhang, X, Zhou, X, Sun, Z, Tang, Z, Lu, F & Thompson, GE (2016b). Characterization of localized corrosion in an Al-Cu-Li alloy. J Mater Eng Perform 25(5), 18111819.CrossRefGoogle Scholar
Luo, C, Zhou, X, Thompson, GE & Hughes, AE (2012). Observations of intergranular corrosion in AA2024-T351: The influence of grain stored energy. Corros Sci 61(0), 3544.CrossRefGoogle Scholar
Ma, Y, Zhou, X, Huang, W, Thompson, GE, Zhang, X, Luo, C & Sun, Z (2015). Localized corrosion in AA2099-T83 aluminum-lithium alloy: The role of intermetallic particles. Mater Chem Physics 161, 201210.CrossRefGoogle Scholar
Ma, Y, Zhou, X, Liao, Y, Yi, Y, Wu, H, Wang, Z & Huang, W (2016). Localised corrosion in AA 2099-T83 aluminium-lithium alloy: The role of grain orientation. Corros Sci. 107, 4148.CrossRefGoogle Scholar
MacRae, CM, Hughes, AE, Laird, JS, Glenn, AM, Wilson, NC, Torpy, A, Gibson, MA, Zhou, X, Birbilis, N & Thompson, GE (2018). An examination of the composition and microstructure of coarse intermetallic particles in AA2099-T8, including Li detection. Microsc Microanal 24(4), 325341.CrossRefGoogle ScholarPubMed
Muster, TH & Hughes, AE (2006). Applications and limitations of scanning kelvin probe force microscopy for the surface analysis of aluminum alloys. J Electrochem Soc 153(11), B474B485.CrossRefGoogle Scholar
Olefjord, I & Nylund, A (1994). Surface analysis of oxidized aluminum. 2. Oxidation of aluminum in dry and humid atmosphere studied by ESCA, SEM, SAM and EDX. Surf Interface Anal 21(5), 290297.CrossRefGoogle Scholar
Park, HS, Gall, K & Zimmerman, JA (2006). Deformation of FCC nanowires by twinning and slip. J Mech Phys Solids 54(9), 18621881.CrossRefGoogle Scholar
Pride, ST, Scully, JR & Hudson, JL (1994). Metastable pitting of aluminum and criteria for the transition to stable pit growth. J Electrochem Soc 141(11), 30283040.CrossRefGoogle Scholar
Proton, V, Alexis, J, Andrieu, E, Delfosse, J, Deschamps, A, De Geuser, F, Lafont, MC & Blanc, C (2014). The influence of artificial ageing on the corrosion behaviour of a 2050 aluminium-copper-lithium alloy. Corros Sci 80, 494502.CrossRefGoogle Scholar
Rioja, RJ & Liu, J (2012). The evolution of Al-Li base products for aerospace and space applications. Metall Mater Trans A: Phys Metall Mater Sci 43(9), 33253337.CrossRefGoogle Scholar
Scamans, GM, Frolish, MF, Rainforth, WM, Zhou, Z, Liu, Y, Zhou, X & Thompson, GE (2010). The ubiquitous Beilby layer on aluminium surfaces. Surf Interface Anal 42(4), 175179.CrossRefGoogle Scholar
Schmutz, P & Frankel, GS (1998). Characterization of AA2024-T3 by scanning Kelvin probe force microscopy. J Electrochem Soc 145(7), 22852295.CrossRefGoogle Scholar
Schneider, O, Ilevbare, GO, Scully, JR & Kelly, RG (2004). In situ confocal laser scanning microscopy of AA 2024-T3 corrosion metrology – II. Trench formation around particles. J Electrochem Soc 151(8), B465B472.CrossRefGoogle Scholar
Shao, M, Fu, Y, Hu, R & Lin, C (2003). A study on pitting corrosion of aluminum alloy 2024-T3 by scanning microreference electrode technique. Mater Sci Eng A 344(1–2), 323327.CrossRefGoogle Scholar
Süess, MJ, Mueller, E & Wepf, R (2011). Minimization of amorphous layer in Ar + ion milling for UHR-EM. Ultramicroscopy 111(8), 12241232.CrossRefGoogle ScholarPubMed
Sukiman, NL, Zhou, X, Birbilis, N, Hughes, AE, Mol, JMC, Garcia, SJ, Zhou, X, and Thompson, GE (2012). Durability and corrosion of aluminium and its alloys: Overview, property space, techniques and developments aluminium alloys - new trends in fabrication and applications. Z. Ahmad. Rijeka, Intech Publications.Google Scholar
Trethewey, KR & Chamberlain, J (1990). Corrosion: For Students Science and Engineering. Harlow: Longman Scientific & Technical.Google Scholar
Trueman, AR (2005). Determining the probability of stable pit initiation on aluminium alloys using potentiostatic electrochemical measurements. Corros Sci 47(9), 22402256.CrossRefGoogle Scholar
Viefhaus, H, Hennesen, K, Lucas, M, Müller-Lorenz, EM & Grabke, HJ (1994). Ion sputter rates and yields for iron-, chromium- and aluminium oxide layers. Surf Interface Anal 21(9), 665672.CrossRefGoogle Scholar
Warner, T (2006). Recently-developed aluminium solutions for aerospace applications. Mater Sci Forum 519-521, 12711278.CrossRefGoogle Scholar
White, PA, Smith, GB, Harvey, TG, Corrigan, PA, Glenn, MA, Lau, D, Hardin, SG, Mardel, J, Markley, TA, Muster, TH, Sherman, N, Garcia, SJ, Mol, JMC & Hughes, AE (2012). A new high-throughput method for corrosion testing. Corros Sci 58, 327331.CrossRefGoogle Scholar
Yamauchi, Y & Shimizu, R (1983). Secondary electron emission from aluminum by argon and oxygen ion bombardment below 3 kev. Jap J Appl Phys, Part 2: Lett 22(22), 227229.CrossRefGoogle Scholar
Yasakau, KA, Zheludkevich, ML & Ferreira, MGS (2008). Study of the corrosion mechanism and corrosion inhibition of 2024 aluminum alloy by SKPFM technique. Advanced Materials Forum Iv. A. T. Marques, A. F. Silva, A. P. M. Baptista et al. 587–588: 405–409.Google Scholar
Zhang, WL & Frankel, GS (2003). Transitions between pitting and intergranular corrosion in AA2024. Electrochim Acta 48(9), 11931210.Google Scholar
Zhang, X, Zhou, X, Hashimoto, T, Liu, B, Luo, C, Sun, Z, Tang, Z, Lu, F & Ma, Y (2018). Corrosion behaviour of 2A97-T6 Al-Cu-Li alloy: The influence of non-uniform precipitation. Corros Sci 132, 18.CrossRefGoogle Scholar
Zhang, X, Zhou, X, Ma, Y, Thompson, GE, Luo, C, Sun, Z & Tang, Z (2016). The propagation of localized corrosion in Al-Cu-Li alloy. Surf Interface Anal 48(8), 745749.CrossRefGoogle Scholar
Zhao, Z & Frankel, GS (2007). Surface layer dissolution kinetics of aluminum alloy 7075 in various tempers. Corrosion 63(7), 613624.CrossRefGoogle Scholar
Zhou, X, Luo, C, Ma, Y, Hashimoto, T, Thompson, GE, Hughes, AE & Skeldon, P (2013). Grain-stored energy and the propagation of intergranular corrosion in AA2xxx aluminium alloys. Surf Interface Anal 45(10), 15431547.Google Scholar