Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T12:51:26.808Z Has data issue: false hasContentIssue false

On the Use of Simulated Field-Evaporated Specimen Apex Shapes in Atom Probe Tomography Data Reconstruction

Published online by Cambridge University Press:  12 October 2012

David J. Larson*
Affiliation:
Cameca Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711, USA
Brian P. Geiser
Affiliation:
Cameca Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711, USA
Ty J. Prosa
Affiliation:
Cameca Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711, USA
Thomas F. Kelly
Affiliation:
Cameca Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711, USA
*
*Corresponding author. E-mail: david.larson@ametek.com
Get access

Abstract

The ability to accurately reconstruct original spatial positions of field-evaporated ions emitted from a surface is fundamental to the success of atom probe tomography. As such, a clear understanding of the evolution of specimen shape and the resultant ions' trajectories during field evaporation plays an important role in improving reconstruction accuracy. To further this understanding, field-evaporation simulations of a bilayer specimen composed of two materials having an evaporation field difference of 20% were performed. The simulated field-evaporation patterns qualitatively compare favorably with experimental data, which provides confidence in the accuracy of specimen shapes predicted by the simulation. Correlations of known original atom positions with detector hit positions as a function of lateral detector position and evaporated depth were derived from the simulation. These correlations are contrasted with the current state-of-the-art reconstruction method thus outlining limitations of the current methodology. A pair of transformations are defined that take into account field-evaporated specimen shapes, and the resulting radial magnifications, to relate recorded ion positions in detector space to reconstructed atomic positions in specimen space. This novel process, when applied to simulated data, results in approximately a factor of 2 improvement in accuracy for reconstructions of interfaces with unequal fields (most general interfaces). This method is not constrained by the fundamental assumption of a hemispherical specimen shape.

Type
Techniques and Equipment Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298304.Google Scholar
Blavette, D., Sarrau, J.M., Bostel, A. & Gallot, J. (1982). Direction et distance d'analyse a la sonde atomique. Revue Phys Appl 17, 435440.Google Scholar
Bowkett, K.M. & Smith, D.A. (1970). Field-Ion Microscopy. Amsterdam: North-Holland.Google Scholar
Cerezo, A., Clifton, P.H., Galtrey, M.J., Humphreys, C.J., Kelly, T.F., Larson, D.J., Lozano-Perez, S., Marquis, E.A., Oliver, R.A., Sha, G., Thompson, K., Zandbergen, M. & Alvis, R.A. (2007). Atom probe tomography today. Mater Today 10(12), 3642.Google Scholar
Cerezo, A., Smith, G. & Warren, P.J. (1999). Some aspects of image projection in the field-ion microscope. Ultramicroscopy 79, 251257.Google Scholar
De Geuser, F., Gault, B., Bostel, A. & Vurpillot, F. (2007a). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601(2), 536543.CrossRefGoogle Scholar
De Geuser, F., Lefebvre, W., Danoix, F., Vurpillot, F., Blavette, D. & Forbord, B. (2007b). An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf Interf Anal 39(2-3), 268272.Google Scholar
Fortes, M.A. (1971). The shape of field-evaporated metal tips. Surf Sci 28, 95116.Google Scholar
Gault, B., de Geuser, F., Stephenson, L.T., Moody, M.P., Muddle, B.C. & Ringer, S.P. (2008). Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal 14, 296305.Google Scholar
Gault, B., Haley, D., de Gueser, F., Moody, M.P., Marquis, E.A., Larson, D.J. & Geiser, B.P. (2011). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111, 448457.Google Scholar
Gault, B., La Fontaine, A., Moody, M.P., Ringer, S.P. & Marquis, E.A. (2010). Impact of laser pulsing on the reconstruction in atom probe tomography. Ultramicroscopy 110, 12151222.Google Scholar
Gault, B., Moody, M.P., De Geuser, F., Tsafnat, G., La Fontaine, A., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105, 034913/034911–034919. CrossRefGoogle Scholar
Geiser, B.P., Larson, D.J., Gerstl, S.S.A., Reinhard, D.A., Kelly, T.F., Prosa, T.J. & Olson, J.D. (2009a). A system for simulation of tip evolution under field evaporation. Microsc Microanal 15(S2), 302303.Google Scholar
Geiser, B.P., Larson, D.J., Oltman, E., Gerstl, S.S.A., Reinhard, D.A., Kelly, T.F. & Prosa, T.J. (2009b). Wide-field-of-view atom probe reconstruction. Microsc Microanal 15(S2), 292293.CrossRefGoogle Scholar
Geiser, B.P., Oltman, E., Larson, D.J., Prosa, T.J. & Kelly, T.F. (2011). Analytic hitmap equation of the ideal spherical evaporator. Microsc Microanal 17(S2), 278280.Google Scholar
Gerstl, S.S.A., Geiser, B.P., Kelly, T.F. & Larson, D.J. (2009). Evaluation of local radii of atom-probe-tomography specimens. Microsc Microanal 15(S2), 248249.Google Scholar
Gomer, R. (1961). Field Emission and Field Ionization. Cambridge, MA: Harvard University Press.Google Scholar
Haley, D., Petersen, T., Ringer, S.P. & Smith, G.D.W. (2011). Atom probe trajectory mapping using experimental tip shape measurements. J Microsc 244(2), 170180.Google Scholar
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 031101031120.CrossRefGoogle ScholarPubMed
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999a). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.Google Scholar
Larson, D.J., Geiser, B.P., Prosa, T.J., Gerstl, S.S.A., Reinhard, D.A. & Kelly, T.F. (2011a). Improvements in planar feature reconstructions in atom probe tomography. J Microsc 243, 1530.Google Scholar
Larson, D.J., Geiser, B.P., Prosa, T.J. & Kelly, T.F. (2011b). Toward automated optimization of reconstruction of atom probe data. Microsc Microanal 17(S2), 724725.Google Scholar
Larson, D.J., Geiser, B.P., Prosa, T.J., Ulfig, R. & Kelly, T.F. (2011c). Nontangential continuity reconstruction in atom probe tomography data. Microsc Microanal 17(S2), 740741.Google Scholar
Larson, D.J., Prosa, T.J., Geiser, B.P. & Egelhoff, W.L. Jr. (2011d). Effect of analysis direction on the measurement of interfacial mixing in thin metal layers with atom probe tomography. Ultramicroscopy 111, 506511.Google Scholar
Larson, D.J., Russel, K.F. & Miller, M.K. (1999b). Effect of specimen aspect ratio on the reconstruction of atom probe tomography data. Microsc Microanal 5, 930931.Google Scholar
Loberg, B. & Norden, H. (1968). Observations of the field-evaporation end form of tungsten. Arkiv for Fysik 39(25), 383395.Google Scholar
Marquis, E.A., Geiser, B.P., Prosa, T.J. & Larson, D.J. (2011). Evolution of tip shape during field evaporation of complex multilayer structures. J Microsc 241(3), 225233.Google Scholar
Miller, M.K. (1989). Field evaporation and field ion microscopy study of the morphology of phases produced as a result of low temperature phase transformations in the iron-chromium system. Colloque de Physique 50(C8), 247252.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: Oxford University Press.Google Scholar
Miller, M.K. & Hetherington, M.G. (1991). Local magnification effects in the atom probe. Surf Sci 246(1-3), 442449.Google Scholar
Miller, M.K., Russell, K.F. & Thompson, G.B. (2005). Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102, 287298.CrossRefGoogle ScholarPubMed
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13, 428436.Google Scholar
Oberdorfer, C. & Schmitz, G. (2011). On the field evaporation behavior of dielectric materials in three-dimensional atom probe: A numeric simulation. Microsc Microanal 17, 1525.Google Scholar
Petersen, T.C. & Ringer, S.P. (2009). Electron tomography using a geometric surface-tangent algorithm: Application to atom probe specimen morphology. J Appl Phys 105, 103518. Google Scholar
Rose, D.J. (1956). On the magnification and resolution of the field emission electron microscope. J Appl Phys 27(3), 215220.Google Scholar
Sha, G. & Cerezo, A. (2005). Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy. Ultramicroscopy 102, 151159.Google Scholar
Shariq, A., Mutas, S., Wedderhoff, K., Klein, C., Hortenbach, H., Teichert, S., Kucher, P. & Gerstl, S.S.A. (2009). Investigations of field-evaporated end forms in voltage- and laser-pulsed atom probe tomography. Ultramicroscopy 109(5), 472479.Google Scholar
Thompson, K., Lawrence, D.J., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In-situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.Google Scholar
Tsong, T.T. (1978). Field ion image formation. Surf Sci 70, 211233.Google Scholar
Vurpillot, F. (2001). Etude de la fonction de transfert point-image de la sonde atomique tomographique. In Groupe de Physiques des Matériaux. Rouen, France: Université de Rouen.Google Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (1999). The shape of field emitters and the ion trajectories in three-dimensional atom probes. J Microsc 196(3), 332336.Google Scholar
Vurpillot, F., Gruber, M., Da Costa, G., Martin, I., Renaud, L. & Bostel, A. (2011). Pragmatic reconstruction methods in atom probe tomography Ultramicroscopy 111(8), 12861294.Google Scholar
Vurpillot, F., Larson, D.J. & Cerezo, A. (2004). Improvement of multilayer analyses with a three-dimensional atom probe. Surf Interf Anal 36, 552558.Google Scholar
Walls, J.M. & Southworth, H.N. (1979). Magnification in the field-ion microscope. J Phys D Appl Phys 12(5), 657667.Google Scholar
Waugh, A.R., Boyes, E.D. & Southon, M.J. (1976). Investigations of field evaporation with a field-desorption microscope. Surf Sci 61, 109142.Google Scholar
Wilkes, T.D., Smith, G.D.W. & Smith, D.A. (1974). On the quantitative analysis of field-ion micrographs. Metallography 7, 403430.Google Scholar