Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T11:25:57.719Z Has data issue: false hasContentIssue false

A Review of Ultrastructural and Ultracytochemical Studies of Infection Processes in Some Plant Wilt Diseases: The Opaque Matter Extensively Involved, Its Links with Pathogen Elements, Insights into Its Nature

Published online by Cambridge University Press:  03 February 2011

G.B. Ouellette*
Affiliation:
3413, rue de Sarnia, Quebec (QC) G1X 2K5, Canada
P.M. Charest
Affiliation:
Département de Phytologie Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec (QC), Canada
H. Chamberland
Affiliation:
Pavillon C.E. Marchand, Université Laval, Québec (QC), Canada
*
Corresponding author. E-mail: gouellette_3@sympatico.ca
Get access

Abstract

The present review is based on results of several years of investigation on the pathogenesis of plant wilt diseases using for one of the main aspects, several labeling techniques at the ultrastructural level: autoradiography with 3H-thymidine; gold-tagged lectins, enzymes, polyclonal, and monoclonal antibodies. Thus, opaque matter (OM), labeling for DNA with the appropriate markers, can be abundant in and associated with host tissue reactions and pronounced alterations (particularly in newly differentiated xylem). The presence of structures (called P-elements) in OM, paralleled by a similar occurrence in nuclei of both the host and pathogen cells, is considered as being also indicative of a cytoplasmic nature for this OM and most likely originating from fungal elements.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atsatt, P. (2003). Fungus propagules in plastids: The mycosome hypothesis. Available at www.mycosomes.info.CrossRefGoogle Scholar
Baayen, R.P., Ouellette, G.B. & Rioux, D. (1996). Compartmentalization of decay in carnation resistant to Fusarium oxysporum f. sp. dianthi. Phytopathology 86, 10181031.CrossRefGoogle Scholar
Beckman, C.H. (1987). The Nature of Wilt Diseases in Plants, pp. 1175. St. Paul, MN: APS Press.Google Scholar
Benhamou, N. & Ouellette, G.B. (1986). Ultrastructural characterization of an extracellular sheath on cells of Ascocalyx abietina, the scleroderris canker agent of conifers. Can J Bot 65, 154167.CrossRefGoogle Scholar
Bernier, L., Breuil, C., Hintz, W.E., Horgen, P.A., Jacobi, J., Dufour, J., Aoun, M., Bouvet, G., Kim, S.H., Diguistini, S., Tanguay, P., Eades, J., Surgess, S., De la Bastide, P., Pinchback, M. & Tadesse, Y. (2004). The Canadian Ophiostoma genome project. In New Approaches to Elm Conservation, Gil, L., Solla, A. & Ouellette, G.B. (Eds.). Investig Agrar: Sist Recur For 13, 105117.Google Scholar
Carothers, Z.B. (1973). Studies of spermatogenesis in the Hepaticaea. IV. On the pblepharoplast of Blasia. Am J Bot 60, 819828.CrossRefGoogle Scholar
Casagrande, F. & Ouellette, G.B. (1971). A technique to study the development in wood of soft rot fungi and its application to Ceratocystis ulmi. Can J Bot 49, 155159.CrossRefGoogle Scholar
Celerin, M., Laudenbach, D.E., Bancroft, J.B. & Day, A.W. (1994). Evidence that fimbriae of the smut fungus Microbotryum violaceum contain RNA. Microbiology 140, 26992704.CrossRefGoogle ScholarPubMed
Chamberland, H. (1994). Gold labelling methods for the ultrastructural localization of host wall and pathogen components. In Host wall alterations by parasitic fungi, Petrini, O. & Ouellette, G.B. (Eds.), pp. 111. St. Paul, MN: APS Press.Google Scholar
Chamberland, H. & Ouellette, G.B. (1977). Caractéristiques ultrastructurales de Ceratocystis ulmi en milieux naturel et artificiel. Can J Bot 55, 15791598.CrossRefGoogle Scholar
Chamberland, H., Ouellette, G.B., Pauzé, F.J. & Charest, P.M. (1991). Immunocytochemical localization of tomato pectin esterase in root cells of tomato plants infected by Fusarium oxysporum f. sp. radicis-lycopersici. Can J Bot 69, 12651274.CrossRefGoogle Scholar
Charest, P.M., Ouellette, G.B., Blais, P. & Chamberland, H. (2004). Irregular growth forms and cell wall modifications, polygalacturonase detection, and endocell formation in Fusarium oxysporum f. sp. radicis-lycopersici infecting tomato plants, as studied ultrastructurally and cytochemically. Mycol Prog 3, 137150.CrossRefGoogle Scholar
Charest, P.M., Ouellette, G.B. & Pauzé, F.J. (1984). Cytological observations of early infection process by Fusarium oxysporum f.sp. radicis-lycopersici in tomato plants. Can J Bot 62, 12421244.CrossRefGoogle Scholar
Et-Touil, A., Brasier, C.M. & Bernier, L. (1999). Localization of a pathogenicity gene in Ophiostoma novo-ulmi and evidence that it may be introgressed from O. ulmi. MPMI 12, 615.CrossRefGoogle Scholar
Fradin, E.F. & Thomma, B.P.H. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7, 7186.CrossRefGoogle Scholar
Gardener, R.B. & Day, A.W. (1985). Fungal fimbriae. IV. Composition and properties of fimbriae from Ustilago violacea. Exp Mycol 9, 334350.CrossRefGoogle Scholar
Green, R.J. Jr. (1981). An overview. In Fungal Wilt Diseases of Plant, Mace, M.E., Bell, A.A. & Beckman, C.H. (Eds.), pp. 124. New York/London/Toronto/Sydney/San Francisco: Academic Press.Google Scholar
Hale, M.D. & Eaton, R.A. (1985). The ultrastructure of soft rot fungi. I. Fine hyphae in wood cell walls. Mycologia 77, 447463.CrossRefGoogle Scholar
Keen, N.K., Long, M. & Erwin, D.C. (1972). Possible involvement of a pathogen-produced protein lipopolysaccharide complex in Verticilliium wilt of cotton. Physiol Plant Pathol 2, 317331.CrossRefGoogle Scholar
Lindahl, B.J. & Finlay, R.D. (2006). Activities of chitinolytic enzymes during primary and secondary colonization of wood by basidiomycetous fungi. New Phytol 169, 389397.CrossRefGoogle ScholarPubMed
MacDonald, W.L. & Hindal, D.F. (1981). Life cycle and epidemiology of Ceratocystis. In Fungal Wilt Diseases of Plants, Mace, M.E., Bell, A.A. & Beckman, C.H. (Eds.), pp. 113144. New York/London/Toronto/Sydney/San Francisco: Academic Press.CrossRefGoogle Scholar
Nelson, P.E. (1981). Life cycle and epidemiology of Fusarium oxysporum. In Fungal Wilt Diseases of Plants, Mace, M.E., Bell, A.A. & Beckman, C.H. (Eds.), pp. 7180. New York/London/Toronto/Sydney/San Francisco: Academic Press.Google Scholar
Nicole, M., Ruel, K. & Ouellette, G.B. (1994). Fine morphology of fungal structures involved in host wall alteration. In Host Wall Alterations by Parasitic Fungi, Petrini, O. & Ouellette, G.B. (Eds.), pp. 1330. St. Paul, MN: APS Press.Google Scholar
Ouellette, G.B. (1962a). Morphological characteristics of Ceratocystis ulmi (Buism.) C. Moreau in American elm trees. Can J Bot 40, 14631466.CrossRefGoogle Scholar
Ouellette, G.B. (1962b). Studies on the infection process of Ceratocystis ulmi (Buism.) C. Moreau in American elm trees. Can J Bot 40, 15671575, pl. 1–4.CrossRefGoogle Scholar
Ouellette, G.B. (1978a). Fine structural observations on substances attributable to Ceratocystis ulmi in American elm and aspects of host cell disturbances. Can J Bot 56, 25502566.CrossRefGoogle Scholar
Ouellette, G.B. (1978b). Ultrastructual observations on pit membrane alterations and associated effects in elm xylem tissues infected by Ceratocystis ulmi. Can J Bot 56, 25672588.CrossRefGoogle Scholar
Ouellette, G.B. (1978c). Light and electron microscope studies on cell wall breakdown in American elm tissue infected with Dutch elm disease. Can J Bot 56, 26662693.CrossRefGoogle Scholar
Ouellette, G.B. (1980). Occurrence of tyloses and their ultrastructual differentiation from similarly configured structures in American elm infected by Ceratocystis ulmi. Can J Bot 58, 10561073.CrossRefGoogle Scholar
Ouellette, G.B. (1981a). Ultrastructural cell wall modifications in secondary xylem of American elm surviving the acute stage of Dutch elm disease: Vessel members. Can J Bot 59, 24112424.CrossRefGoogle Scholar
Ouellette, G.B. (1981b). Ultrastructural cell wall modifications in secondary xylem of American elm surviving the acute stage of Dutch elm disease: Fibres. Can J Bot 59, 24252438.CrossRefGoogle Scholar
Ouellette, G.B. & Baayen, R.P. (2000). Peculiar structures occurring in vessel walls of the susceptible carnation cultivar Early Sam infected with Fusarium oxysporum f.sp. dianthi. Can J Bot 78, 270277.Google Scholar
Ouellette, G.B., Baayen, R.P., Bernier, L., Chamberland, H., Charest, P.M., Rioux, D. & Simard, M. (2001). Chitin: To be or not to be in some ascomycetous fungi. In Chitin enzymology, Muzazarelli, R.A.A. (Ed.), pp. 7988. Milan, Italy: Atec Italia.Google Scholar
Ouellette, G.B., Baayen, R.P., Chamberland, H., Simard, M., Rioux, D. & Charest, P.M. (2004a). Cytochemical labeling for fungal and host components in plant tissues inoculated with fungal wilt pathogens. Microsc Microanal 10, 449461.CrossRefGoogle ScholarPubMed
Ouellette, G.B., Baayen, R.P., Rioux, D. & Simard, M. (2004b). Peculiar ultrastructural characteristics of fungal cells and of other elements apposed to and in vessel walls in plants of a susceptible carnation cultivar, infected with Fusarium oxysporum f. sp. dianthi race 2. Phytoprotection 85, 121138.CrossRefGoogle Scholar
Ouellette, G.B., Baayen, R.P., Rioux, D. & Simard, M. (2004c). Occurrence of paracrystalloids and their particles in resistant and susceptible carnation plants infected with Fusarium oxysporum f. sp. dianthi race 2. Phytoprotection 85, 139151.CrossRefGoogle Scholar
Ouellette, G.B., Baayen, R.P., Simard, M. & Rioux, D. (1999a). Ultrastructural and cytochemical study of colonization of xylem vessel elements of susceptible and resistant Dianthus caryophyllus by Fusarium oxysporum f.sp. dianthi. Can J Bot 77, 644663.Google Scholar
Ouellette, G.B., Baayen, R.P., Simard, M. & Rioux, D. (2002). Reactions of paratracheal cells of resistant and susceptible carnation (Dianthus caryophyllus) cultivars to vascular invasion by Fusarium oxysporum f. sp. dianthi. New Phytol 156, 113128.CrossRefGoogle Scholar
Ouellette, G.B. & Chamberland, H. (2006). Tissue invasion and alteration in eggplant infected with Verticillium dahliae: A light and transmission electron microscopy study. Phytoprotection 87, 2942.CrossRefGoogle Scholar
Ouellette, G.B., Chamberland, H., Goulet, A., Lachapelle, M. & Lafontaine, J-G. (1999b). Fine structure of the extracellular sheath and cell walls in Ophiostoma novo-ulmi growing on various substrates. Can J Microbiol 45, 582597.CrossRefGoogle Scholar
Ouellette, G.B., Charest, P.M. & Chamberland, H. (2008a). Close-ups on aspects of fungal wilt diseases. Phytoprotection 88, 7781.CrossRefGoogle Scholar
Ouellette, G.B., Charest, P.M. & Chamberland, H. (2008b). Close-ups on aspects of fungal wilt diseases. Available at www.wilt-ism.net. Complete work available on book and DVD forms, 294 pp.CrossRefGoogle Scholar
Ouellette, G.B., Cherif, M., Simard, M. & Bernier, L. (2005a). Histopathology of Fusarium wilt of staghorn sumac (Rhus typhina) caused by Fusarium oxysporum f. sp. callistephi race 3. I. Modes of tissue colonization and pathogen peculiarities. Phytoprotection 86, 157174.CrossRefGoogle Scholar
Ouellette, G.B. & Gagnon, C. (1960). Formation of microendospores in Ceratocystis ulmi (Buism.) C. Moreau. Can J Bot 38, 235241.CrossRefGoogle Scholar
Ouellette, G.B., Méthot, N., Chamberland, H., Côté, C. & Lafontaine, J.-G. (1995). Cytology of irregular growth forms of Ophiostoma novo-ulmi growing through Millipore membranes and sterilized wood sections. Can J Microbiol 41, 10951110.CrossRefGoogle Scholar
Ouellette, G.B. & Rioux, D. (1992). Anatomical and physiological aspects of resistance to Dutch elm disease. In Defense Mechanisms of Woody Plants against Fungi, Blanchette, R.A. & Biggs, A.R. (Eds.), pp. 257307. Berlin/Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Ouellette, G.B. & Rioux, D. (1993). Alterations of vessel elements and reactions of surrounding tissue in the DED syndrome. In Dutch Elm Disease Research: Cellular and Molecular Approaches, Sticklen, M.B. & Sherald, J.L. (Eds.), pp. 255292. New York: Springer-Verlag.CrossRefGoogle Scholar
Ouellette, G.B., Rioux, D. & Simard, M. (2005b). Histopathology of fusarium wilt of staghorn sumac (Rhus typhina) caused by Fusarium oxysporum f. sp. callistephi race 3. II. Characteristics of opaque matter associated with extensive host cell and wall alterations. Phytoprotection 86, 175187.CrossRefGoogle Scholar
Ouellette, G.B., Rioux, D., Simard, M., Chamberland, H. & Cherif, M. (2004d). Ultrastructural and cytochemical studies of host and pathogens in some fungal wilt diseases: Retro- and introspection towards a better understanding of DED. In New Approaches to Elm Conservation, Gil, L., Solla, A. & Ouellette, G.B. (Eds.). Investig Agrar: Sist Recur For 13, 119145.Google Scholar
Ouellette, G.B., Rioux, D., Simard, M., Chamberland, H., Cherif, M. & Baayen, R.P. (2004e). Ultrastructure of the alveolar network and its relation to coating on vessel walls in elms infected by Ophiostoma novo-ulmi and in other plants affected with similar wilt diseases. In New Approaches to Elm Conservation, Gil, L., Solla, A. & Ouellette, G.B. (Eds.). Investig Agrar: Sist Recur For 13, 147160.Google Scholar
Pegg, G.F. & Brady, B.L. (2002). Verticillium Wilts. Oxon, UK: CABI Publishing.CrossRefGoogle Scholar
Renzaglia, K.S., Dengate, S.B., Schmitt, S.J. & Duckett, J.G. (2002). Novel features of Equisetum arvense spermatozoids: Insights into pteridophyte evolution. New Phytol 154, 159174.CrossRefGoogle Scholar
Rioux, D. & Biggs, A.R. (1994). Cell wall changes in host and nonhost systems: Microscopic aspects. In Host Wall Alterations by Parasitic Fungi, Petrini, O. & Ouellette, G.B. (Eds.), pp. 3144. St. Paul, MN: APS Press.Google Scholar
Rioux, D., Chamberland, H., Simard, M. & Ouellette, G.B. (1995). Suberized tyloses in trees: An ultrastructural and cytochemical study. Planta 196, 125140.CrossRefGoogle Scholar
Rioux, D., Nicole, M., Simard, M. & Ouellette, G.B. (1998). Immunocytochemical evidence that secretion of pectin occurs during gel (gum) and tylosis formation in trees. Phytopathology 88, 494505.CrossRefGoogle ScholarPubMed
Rioux, D. & Ouellette, G.B. (1991). Barrier zone formation in host and nonhost trees inoculated with Ophiostoma ulmi. Can J Bot 69, 20552073.CrossRefGoogle Scholar
Robb, E.J. (2000). Verticillium. In Encyclopedia of Microbiology, 2nd ed., Vol. 4 (Q–Z), Lederberg, J. (Ed.), pp. 788795. San Diego, CA: Academic Press.Google Scholar
Robb, E.J., Powell, D.A. & Street, P.F.S. (1989). Vascular coating: A barrier to colonization by the pathogen in Verticillium wilt of tomato. Can J Bot 67, 600607.CrossRefGoogle Scholar
Schnathorst, W.C. (1981). Life cycle and epidemiology of Verticillium. In Fungal Wilt diseases of Plants, Mace, M.E., Bell, A.A. & Beckman, C.H. (Eds.), pp. 81111. New York/London/Toronto/Sydney/San Francisco: Academic Press.CrossRefGoogle Scholar
Stipanovic, R.D., Mace, M.E., Altman, A.A. & Bell, A.A. (1988). Chemical and anatomical response in Gossypium spp. challenged by Verticillium dahliae. ACS Symposium Series 380, 262272.CrossRefGoogle Scholar
Tremblay, S.D. & Lafontaine, J-G. (1991). Immunocytochemical localization of nuclear antigens in the unicellular green alga, Chlamydomonas reinhardtii, processed by cryofixation and freeze-substitution. Protoplasma 165, 189202.CrossRefGoogle Scholar
Vander Molen, G.E., Labavitch, J.M. & DeVay, J.E. (1986). Fusarium-induced vascular gels from bananas roots—A partial chemical characterization. Physiol Plant 66, 298302.CrossRefGoogle Scholar