Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-10T12:28:07.468Z Has data issue: false hasContentIssue false

Ultrastructural Observations Reveal the Presence of Channels between Cork Cells

Published online by Cambridge University Press:  08 October 2009

Rita Teresa Teixeira*
Affiliation:
Centro de Estudos Florestais, Instituto superior de Agronomia, Universidade Técnica de Lisboa1349-017, Portugal
Helena Pereira
Affiliation:
Centro de Estudos Florestais, Instituto superior de Agronomia, Universidade Técnica de Lisboa1349-017, Portugal
*
Corresponding author. E-mail: rtteixeira@isa.utl.pt
Get access

Abstract

The ultrastructure of phellem cells of Quercus suber L. (cork oak) and Calotropis procera (Ait) R. Br. were analyzed using electron transmission microscopy to determine the presence or absence of plasmodesmata (PD). Different types of Q. suber cork samples were studied: one year shoots; virgin cork (first periderm), reproduction cork (traumatic periderm), and wet cork. The channel structures of PD were found in all the samples crossing adjacent cell walls through the suberin layer of the secondary wall. Calotropis phellem also showed PD crossing the cell walls of adjacent cells but in fewer numbers compared to Q. suber. In one year stems of cork oak, it was possible to follow the physiologically active PD with ribosomic accumulation next to the aperture of the channel seen in the phellogen cells to the completely obstructed channels in the dead cells that characterize the phellem tissue.

Type
Biological Science Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biggs, A.R. & Stobbs, L.W. (1985). Fine structure of the suberized cell walls in the boundary zone and necrophylactic periderm in wounded peach bark. Can J Bot 64, 16061610.CrossRefGoogle Scholar
Butin, H. & Parameswaran, N. (1980). Ultrastructure of Ascodichaena rugosa on beech bark. Arch Microbiol 126, 8795.CrossRefGoogle Scholar
Dewan, S., Kumar, S. & Kumar, V.L. (2000). Antipyretic effect of latex of Calotropis procera. Indian J Pharmacol 32, 252.Google Scholar
Epel, B.L. (1994). Plasmodesmata: Composition, structure and trafficking. Plant Mol Biol 26, 13431356.CrossRefGoogle ScholarPubMed
Esau, K. (1977). Anatomy of Seed Plants, 2nd Ed.New York: Wiley & Sons.Google Scholar
Evert, R.F., Eschrich, W. & Heyser, W. (1977). Distribution and structure of the plasmodesmata in mesophyll and bundle-sheath cells of Zea mays L. Planta 136, 7789.CrossRefGoogle ScholarPubMed
Fahn, A. (1990). Plant Anatomy, 4th Ed.Oxford, UK: Pergamon Press.Google Scholar
Fahn, A., Werker, E. & Baas, P. (1986). Wood Anatomy and Identification of Trees and Shrubs from Israel and Adjacent Regions. Jerusalem: The Israel Academy of Sciences and Humanities.Google Scholar
Fortes, M.A., Rosa, M.E. & Pereira, H. (2004). A Cortiça. Lisboa: IST Press.Google Scholar
Gibson, L.J., Easterling, K.E. & Ashby, M.F. (1981). The structure and mechanics of cork. Proc R Soc Lond A 377, 99117.Google Scholar
Graça, J. & Pereira, H. (2004). The periderm development in Quercus suber. IAWA J 25, 325335.CrossRefGoogle Scholar
Haas, D.L. & Carothers, Z.B. (1975). Some ultrastructural observations on endodermal cell development in Zea mays roots. Amer J Bot 62, 336348.CrossRefGoogle Scholar
Hooke, R. (1665). Micrographia, or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses. With Observations and Inquiries Thereon. London: Martyn and Allestry, for the Royal Society.Google Scholar
Kragler, F., Lucas, W.J. & Monzer, J. (1998). Plasmodesmata: Dynamics, domains and patterning. Ann Botany 81, 110.CrossRefGoogle Scholar
Lev, Y.S. (1999). Articulated cork in Calotropis procera (Asclepiadaceae). Aliso 18, 161163.Google Scholar
Lucas, W.J., Ding, B. & Van der Schoot, C. (1993). Transley review No. 58: Plasmodesmata and the supracellular nature of plants. New Phytol 125, 435476.Google Scholar
Natividade, J.V. (1950). Subericultura. Lisboa: Direcção Geral dos Serviços Florestais e Aquícolas.Google Scholar
Northcote, D.H., Davey, R. & Lay, J. (1989). Use of antisera to localize callose, xylan and arabinogalactan in the cell-plate, primary and secondary walls of plant cells. Planta 178, 353366.Google Scholar
Parameswaran, N., Liese, W. & Gunzerodt, H. (1981). Characterization of wetcork in Quercus suber L. Holzforschung 35, 195199.CrossRefGoogle Scholar
Pereira, H. (1988a). Structure and chemical composition of cork from Calotropis procera (Ait) R. Br. IAWA Bull 9, 5358.Google Scholar
Pereira, H. (1988b). Chemical composition and variability of cork form Quercus suber L. Wood Sci Technol 22, 211218.CrossRefGoogle Scholar
Pereira, H. (2007). Cork: Biology, Production and Uses. Amsterdam: Elsevier.Google Scholar
Pereira, H., Rosa, M.E. & Fortes, M.A. (1987). The cellular structure of cork from Quercus suber L. IAWA Bull 8, 213218.Google Scholar
Pereira, H. & Tomé, M. (2004). Non-wood products: Cork oak. In Encyclopedia of Forest Sciences, Burley, J., Evans, J. & Youngquist, J.A. (Eds.), pp. 613620. Oxford: Elsevier.Google Scholar
Rainbow, A. & White, D.J.B. (1972). Preliminary observations on the ultrastructure of maturing cork-cells from tubers of Solanum tuberosum L. New Phytol 71, 899902.CrossRefGoogle Scholar
Schönherr, J. & Ziegler, H. (1980). Water permeability of Betula periderm. Planta 147, 345354.Google Scholar
Sitte, P. (1955). Der Feinbau verkorkter zellwände. Mikroskopie 10, 178200.Google Scholar
Spurr, A.R. (1969). A low-viscose epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 3143.CrossRefGoogle ScholarPubMed
Stobbe, H., Schmitt, U., Echstein, D. & Dujesiefken, D. (2002). Developmental stages and fine structure of surface callus formed after debarking of living lime trees (Tilia sp.). Ann Botany 89, 773782.Google Scholar
Thomas, V., Premakumari, D., Reghu, C.P., Panikkar, A.O.N. & Saraswathy Amma, C.K. (1995). Anatomical and histochemical aspects of bark regeneration in Hevea brasiliensis. Ann Botany 75, 421426.CrossRefGoogle Scholar
Vogt, E., Schönherr, J. & Schmidt, H.W. (1983). Water permeability of periderm membranes isolated enzymatically from potato tubers (Solanum tuberosum L.). Planta 158, 294301.CrossRefGoogle ScholarPubMed
Wattendorff, J. (1974). The formation of cork cells in the periderm of Acacia senegal Willd. Z Pflanzenphysiol Bd 72S, 119134.Google Scholar
Zambryski, P. & Crawford, K. (2000). Plasmodesmata: Gatekeepers for cell-to-cell transport of developmental signals in plants. Annu Rev Cell Dev Biol 16, 393421.Google Scholar