Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T10:49:15.370Z Has data issue: false hasContentIssue false

α-Viniferin-Induced Structural and Functional Alterations in Raillietina echinobothrida, a Poultry Tapeworm

Published online by Cambridge University Press:  16 January 2015

Bishnupada Roy*
Affiliation:
Parasitology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong-793022, Meghalaya, India
Bikash R. Giri
Affiliation:
Parasitology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong-793022, Meghalaya, India
*
*Corresponding author.bishnuroy12@rediffmail.com
Get access

Abstract

α-viniferin, an active component of the plant Carex baccans L., is known for its anticancer, antidiabetic, and anti-inflammatory properties. In Northeast India, different tribes traditionally consume C. baccans to control intestinal helminth infections. Therefore, the present study was carried out to assess the extent of tegumental alteration caused by α-viniferin in Raillietina echinobothrida, a widely prevalent poultry helminth in northeast India. Helminths were exposed in vitro to various doses of α-viniferin (50, 100, and 200 µM/mL of physiological buffered saline) and their motility and mortality were recorded. Stereoscan observations on the parasite exposed to the active compound showed extensive distortion and destruction of the surface fine topography of the tegument compared with controls. The compound also caused extensive damage to the tegument by disintegration of microtriches, disorganization of muscle bundles, and loss of cellular organelles combined with distortion and disruption of the plasma membrane, nuclear membrane, nucleolus, mitochondrial membrane, and cristae. Histochemical and biochemical studies carried out parasites exposed to α-viniferin revealed a decline in the activity of vital tegumental enzymes like acid phosphatase, alkaline phosphatase, and adenosine triphosphatase. Extensive structural and functional alterations observed in the treated parasites are indicative of efficient cestocidal activity of the compound.

Type
Biological Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Challam, M. (2011). An in vitro study on anthelmintic efficacy of some traditional medicinal plants in Meghalaya. PhD Thesis. North-Eastern Hill University, Shillong, India.Google Scholar
Challam, M., Roy, B. & Tandon, V. (2012). In vitro anthelmintic efficacy of Carex baccans (Cyperaceae): ultrastructural, histochemical and biochemical alterations in the cestode, Raillietina echinobothrida . J Parasit Dis 36, 8186.CrossRefGoogle ScholarPubMed
Chen, P.S., Toribara, T.Y. & Warner, H. (1956). Microdetermination of phosphorus. Anal Chem 28, 17561758.Google Scholar
Chen, Y.Q., Xu, Q.M., Li, X.R., Yang, S.L. & Zhu-Ge, H.X. (2012). In vitro evaluation of schistosomicidal potential of curcumin against Schistosoma japonicum . J Asian Nat Prod Res 14(11), 10641072.CrossRefGoogle ScholarPubMed
Coles, G.C., Jackson, F., Pomroy, W.E., Prichard, R.K., Von Samson-Himmelstjerna, G., Silvestre, A., Taylor, M.A. & Vercruysse, J. (2006). The detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol 136(3), 167185.Google Scholar
Dasgupta, S. (2010). Studies on anticestodal efficacy of Acacia oxyphylla (Leguminosae) and Securinega virosa (Euphorbiaseae). PhD Thesis. North-Eastern Hill University, Shillong, India.Google Scholar
Dasgupta, S., Giri, B.R. & Roy, B. (2013 b). Ultrastructural observations on Raillietina echinobothrida exposed to crude extract and active compound of Securinega virosa . Micron 50, 6267.Google Scholar
Dasgupta, S., Roy, B. & Tandon, V. (2010). Ultrastructural alterations of the tegument of Raillietina echinobothrida treated with the stem bark of Acacia oxyphylla (Leguminosae). J Ethnopharmacol 172, 568571.Google Scholar
Dasgupta, S., Roy, B., Venkataswamy, M. & Giri, B.R. (2013 a). Effects of Acacia oxyphylla and Securinega virosa on functional characteristics of Raillietina echinobothrida (phylum: platyhelminthes; class: cestoidea), a poultry cestode parasite. J Parasit Dis 37(1), 125130.Google ScholarPubMed
Gelfand, V.I., Gyoeva, F.K., Rosenblat, V.A. & Shanina, N.A. (1978). A new ATPase in cytoplasmic microtubule preparations. FEBS Lett 8, 197200.Google Scholar
Ghorbani, A., Langenberger, G., Feng, L. & Sauerborn, J. (2011). Ethnobotanical study of medicinal plants utilised by Hani ethnicity in Naban river watershed national nature reserve, Yunnan, China. J Ethnopharmacol 134, 651667.Google Scholar
Giri, B.R. & Roy, B. (2014). Resveratrol induced structural and biochemical alterations in the tegument of Raillietina echinobothrida . Parasitol Int 63(2), 432437.CrossRefGoogle ScholarPubMed
Giri, B.R., Roy, B. & Sinha babu, S.P. (2013). Evidence of apoptosis in Raillietina echinobothrida induced by methanolic extracts of three traditional medicinal plants of northeast india. Exp Parasitol 134(4), 466473.Google Scholar
Gorchilova, L. & Spaldonova, R. (1988). Structural and functional characteristic of the ventral papilla-like formations in Notocotylus ephemera (Nitzsch, 1917) Harwood, 1937 (Trematoda: Notocotylidae). Helminthologia 25, 314.Google Scholar
Halton, D.W. (1997). Nutritional adaptations to parasitism within the platyhelminthes. Int J Parasitol 27, 693704.Google Scholar
He, Z. (2012). Nutritional food manufactured from Carex baccans for preventing cardiovascular and cerebrovascular diseases. Faming Zhuanli Shenqing . CN 102389079.Google Scholar
Hegazi, A.G., Abd el hady, F.K. & Shalaby, H.A. (2007). An in vitro effect of Propolis on adult worms of Fasciola gigantica. Vet Parasitol 144, 279286.Google Scholar
Jones, M.K. (2000). Ultrastructure of the scolex, rhyncheal system and bothridial pits of Otobothrium mugilis (Cestode: Trypanoryncha). Folia Parasitol 47, 2938.CrossRefGoogle Scholar
Kaplan, R.M. (2004). Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol 20(10), 477481.Google Scholar
Kaplan, R.M. & Vidyashankar, A.N. (2012). An inconvenient truth: global warming and anthelmintic resistance. Vet Parasitol 186(1), 7078.CrossRefGoogle ScholarPubMed
Kar, P.K. & Tandon, V. (2004). Anthelmintic efficacy of genistein, the active principle of Flemingia vestita (Fabaceae): alterations in the activity of the enzymes associated with the tegumental and gastrodermal interfaces of the trematode, Fasciolopsis buski . J Parasit Dis 28, 4556.Google Scholar
Keiser, J. & Morson, G. (2008). Fasciola hepatica: tegumental alterations in adult flukes following in vitro and in vivo administration of artesunate and artemether. Exp Parasitol 118(2), 228237.CrossRefGoogle ScholarPubMed
Kumar, P.R., Ravindran, R., Lakshmanan, B., Senthamil selvan, P., Subramanian, H. & Sreekumaran, T. (2007). Pathology of nodular tapeworm in backyard poultry. J Parasit Dis 31, 5455.Google Scholar
Kundu, S., Roy, S. & Lyndem, L.M. (2012). Cassia alata L: potential role as anthelmintic agent against Hymenolepis diminuta . Parasitol Res 111(3), 11871192.CrossRefGoogle ScholarPubMed
Kuperman, B.I. (1988). Functional Morphology of The Lower Cestodes: Ontogenic and Evolutionary Aspect (In Russian). Leningrad: Nauka.Google Scholar
Lee, S., Xiao, C. & Pei, S. (2008). Ethnobotanical survey of medicinal plants at periodic markets of Honghe prefecture in Yunnan province, SW China. J Ethnopharmacol 117, 362377.Google Scholar
Lehninger, A.L. (1975). Biochemistry: The Molecular Basis of Cell Structure and Function. New York: Worth Publications.Google Scholar
Long, C.L. & Li, R. (2004). Ethnobotanical studies on medicinal plants used by the red-headed yao people in Jinping, Yunnan Province, China. J Ethnopharmacol 90, 389395.Google Scholar
Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the folin phenol reagent. J Biol Chem 193, 265275.Google Scholar
Lumsden, R.D. (1975). Surface ultrastructure and cytochemistry of parasitic helminthes. Exp Parasitol 37, 267339.Google Scholar
Morris, G.P. & Finnegan, C.V. (1969). Studies on the differentiating plerocercoid cuticle of Schistocephalus solidus. ii. The ultrastructural examination of cuticle development. Can J Zool 47, 957964.Google Scholar
Pal, P. & Tandon, V. (1998). Anthelmintic efficacy of Flemingia vestita (Leguminoceae): genistein-induced alterations in the ultrastructure of the tegument in the cestode, Raillietina echinobothrida . J Parasit Dis 22(2), 104109.Google Scholar
Pearse, A.G.E. (1968). Histochemistry: Theoretical and Applied. Edinburgh, London, New York: Churchill Livingstone.Google Scholar
Perry, B.D. & Randolph, T.F. (1999). Improving the assessment of the economic impact of parasitic diseases and of their control in production animals. Vet Parasitol 84, 145168.CrossRefGoogle ScholarPubMed
Plummer, D.T. (1988). An Introduction To Practical Biochemistry, 3rd ed. New Delhi: Tata McGraw-Hill Publishing Comp Ltd., New Delhi.Google Scholar
Roy, B., Dasgupta, S. & Giri, B.R. (2012 a). Electron microscopic observations of tegumental surface of Raillietina echinobothrida treated with root-peel extract of Potentilla fulgens . Microsc Res Tech 75, 10001005.CrossRefGoogle ScholarPubMed
Roy, B., Dasgupta, S., Manivel, V., Parameswaran, P.S. & Giri, B.R. (2012 b). Surface topographical and ultrastructural alterations of Raillietina echinobothrida and Ascaridia galli induced by a compound isolated from Acacia oxyphylla . Vet Parasitol 185, 322326.Google Scholar
Roy, B., Dasgupta, S. & Tandon, V. (2008). Ultrastructural observations on tegumental surface of Raillietina echinobothrida and its alterations caused by root‐peel extract of Millettia pachycarpa . Microsc Res Techniq 71(11), 810815.Google Scholar
Roy, B., Swargiary, A., Syiem, D. & Tandon, V. (2010). Potentilla fulgens (Family Rosaceae), a medicinal plant of north-east India: a natural anthelmintic? J Parasit Dis 34(2), 8388.Google Scholar
Shuhua, X., Binggui, S., Utzinger, J., Chollet, J. & Tanner, M. (2002). Transmission electron microscopic observations on ultrastructural damage in juvenile Schistosoma mansoni caused by artemether. Acta Trop 81(1), 5361.Google Scholar
Spicher, M., Naguleswaran, A., Ortega-mora, L.M., Müller, J., Gottstein, B. & Hemphill, A. (2008). In vitro and in vivo effects of 2-methoxyestradiol, either alone or combined with albendazole, against Echinococcus metacestodes. Exp Parasitol 119(4), 475482.Google Scholar
Tandon, V., Pal, P., Roy, B., Rao, H.S.P. & Reddy, K.S. (1997). In vitro anthelmintic activity of root-tuber extract of Flemingia vestita, an indigenous plant in Shillong, India. Parasitol Res 83, 492498.Google Scholar
Threadgold, L.T. & Read, C.P. (1970). Ultrastructure of a unique membrane specialization in tegument. Exp Parasitol 28, 246252.Google Scholar
Toner, E., Brennan, G.P., Welis, K., Mcgeown, J.G. & Fairweather, I. (2008). Physiological and morphological effects of genistein against the liver fluke, Fasciola hepatica . Parasitology 135, 11891203.Google Scholar
Wastling, J.M., Mackenzie, K. & Chappell, L.H. (1994). Cyclosporin a: drug treatment in vivo affects the kinetics of [14c] glucose transport in Hymenolepis microstoma in vitro . Parasitology 108, 223228.Google Scholar
Wolff, M.J., Broadhurst, M.J. & P´ng, L. (2012). Helminthic therapy: improving mucosal barrier function. Trends Parasitol 28, 187194.Google Scholar
Xiao, S.H., Xue, J. & Shen, B. (2010). Transmission electron microscopic observation on ultrastructural alterations in Schistosoma japonicum caused by mefloquine. Parasitol Res 106(5), 11791187.Google Scholar
Zheng, X.L. & Xing, F.W. (2009). Ethnobotanical study on medicinal plants around Mt. Yinggeling, Hainan Island, China. J Ethnopharmacol 124, 197210.CrossRefGoogle Scholar