Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-10T21:17:37.324Z Has data issue: false hasContentIssue false

Work Function Maps and Surface Topography Characterization of Nitroaromatic-Ended Dendron Films on Graphite

Published online by Cambridge University Press:  28 October 2013

Eliana D. Farías
Affiliation:
Departamento de Fisicoquímica (INFIQC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
Verónica Brunetti*
Affiliation:
Departamento de Fisicoquímica (INFIQC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
Julieta I. Paez
Affiliation:
Departamento de Química Orgánica (IMBIV-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
Miriam C. Strumia
Affiliation:
Departamento de Química Orgánica (IMBIV-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
Mario C.G. Passeggi Jr.
Affiliation:
Laboratorio de Superficies e Interfaces (IFIS Litoral, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, S3000GLN, Argentina Departamento de Materiales, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, S3000AOM, Argentina
Julio Ferrón
Affiliation:
Laboratorio de Superficies e Interfaces (IFIS Litoral, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, S3000GLN, Argentina Departamento de Materiales, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, S3000AOM, Argentina
*
*Corresponding author. E-mail: verobrunetti@gmail.com
Get access

Abstract

Surface topography and work function maps were simultaneously obtained for carbon surfaces modified by a dendritic molecule: 3,5-Bis (3,5-dinitrobenzoylamino) benzoic acid. The dendrons were spontaneously assembled onto highly ordered pyrolytic graphite samples, exhibiting an increase in the surface potential. This fact is consistent with the incorporation of an electron-acceptor functional group that remains electroactive on the surface.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bélanger, D. & Pinson, J. (2011). Electrografting: A powerful method for surface modification. Chem Soc Rev 40(7), 39954048.CrossRefGoogle ScholarPubMed
Cullen, R.J., Jayasundara, D.R., Soldi, L., Cheng, J.J., Dufaure, G. & Colavita, P.E. (2012). Spontaneous grafting of nitrophenyl groups on amorphous carbon thin films: A structure-reactivity investigation. Chem Mater 24(6), 10311040.CrossRefGoogle Scholar
De Feyter, S. & De Schryver, F.C. (2003). Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem Soc Rev 32(3), 139150.CrossRefGoogle ScholarPubMed
Florio, G.M., Stiso, K.A. & Campanelli, J.S. (2012). Surface patterning of benzenecarboxylic acids: Influence of structure, solvent, and concentration on molecular self-assembly. J Phys Chem C 116(34), 1816018174.CrossRefGoogle Scholar
Hansen, W.N. & Hansen, G.J. (2001). Standard reference surfaces for work function measurements in air. Surf Sci 481(1-3), 172184.CrossRefGoogle Scholar
Hasobe, T. (2012). Photo- and electro-functional self-assembled architectures of porphyrins. Phys Chem Chem Phys 14(46), 1597515987.CrossRefGoogle ScholarPubMed
Hattori, S., Kano, S., Azuma, Y. & Majima, Y. (2010). Surface potential of 1,10-decanedithiol molecules inserted into octanethiol self-assembled monolayers on Au(111). J Phys Chem C 114(18), 81208125.CrossRefGoogle Scholar
Heimel, G., Romaner, L., Zojer, E. & Bredas, J.L. (2008). The interface energetics of self-assembled monolayers on metals. Acc Chem Res 41(6), 721729.CrossRefGoogle ScholarPubMed
Hoppe, H., Glatzel, T., Niggemann, M., Hinsch, A., Lux-Steiner, M.C. & Sariciftci, N.S. (2005). Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. Nano Lett 5(2), 269274.CrossRefGoogle Scholar
Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J. & Baro, A.M. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(1), 013705-1013705-9.CrossRefGoogle Scholar
Hughes, K.J. & Engstrom, J.R. (2010). Interfacial organic layers: Tailored surface chemistry for nucleation and growth. J Vac Sci Technol A 28(5), 10331059.CrossRefGoogle Scholar
Ishida, Y., Jikei, M. & Kakimoto, M.A. (2000). Rapid synthesis of aromatic polyamide dendrimers by an orthogonal and a double-stage convergent approach. Macromolecules 33(9), 32023211.CrossRefGoogle Scholar
Ivančo, J. (2012). Intrinsic work function of molecular films. Thin Solid Films 520(11), 39753986.CrossRefGoogle Scholar
Kim, S.I., Oh, H.W., Huh, J.W., Ju, B. & Lee, C.W. (2011). Surface potential behaviors of UV treated of Ag anode for high-performance T-OLED by nanotribology. Thin Solid Films 519(20), 68726875.CrossRefGoogle Scholar
Kim, T.W., Yang, Y., Li, F. & Kwan, W.L. (2012). Electrical memory devices based on inorganic/organic nanocomposites. NPG Asia Mater 4(6), e18-1e18-12.CrossRefGoogle Scholar
Klosterman, J.K., Yamauchi, Y. & Fujita, M. (2009). Engineering discrete stacks of aromatic molecules. Chem Soc Rev 38(6), 17141725.CrossRefGoogle ScholarPubMed
Love, C.S., Ashworth, I., Brennan, C., Chechik, V. & Smith, D.K. (2006). Dendron-protected Au nanoparticles—effect of dendritic structure on chemical stability. J Colloid Interface Sci 302(1), 178186.CrossRefGoogle ScholarPubMed
Matis, B.R., Burgess, J.S., Bulat, F.A., Friedman, A.L., Houston, B.H. & Baldwin, J.W. (2012). Surface doping and band gap tunability in hydrogenated graphene. ACS Nano 6(1), 1722.CrossRefGoogle ScholarPubMed
Melitz, W., Shen, J., Kummel, A.C. & Lee, S. (2011). Kelvin probe force microscopy and its application. Surf Sci Rep 66(1), 127.CrossRefGoogle Scholar
Paez, J.I., Froimowicz, P., Baruzzi, A.M., Strumia, M.C. & Brunetti, V. (2008). Attachment of an aromatic dendritic macromolecule to gold surfaces. Electrochem Commun 10(4), 541545.CrossRefGoogle Scholar
Paez, J.I., Martinelli, M., Brunetti, V. & Strumia, M.C. (2012). Dendronization: A useful synthetic strategy to prepare multifunctional materials. Polymers 4(1), 355395.CrossRefGoogle Scholar
Paez, J.I., Strumia, M.C., Passeggi, M.C.G. Jr., Ferrón, J., Baruzzi, A.M. & Brunetti, V. (2009). Spontaneous adsorption of 3,5-bis(3,5-dinitrobenzoylamino) benzoic acid onto carbon. Electrochimica Acta 54(17), 41924197.CrossRefGoogle Scholar
Palermo, V. & Samorì, P. (2007). Molecular self-assembly across multiple length scales. Angewandte Chemie—Int Ed 46(24), 44284432.CrossRefGoogle ScholarPubMed
Park, C., Lee, J. & Kim, C. (2011). Functional supramolecular assemblies derived from dendritic building blocks. Chem Commun 47(44), 1204212056.CrossRefGoogle ScholarPubMed
Pei, Z., Lin, L., Zhang, H., Zhang, L. & Xie, Z. (2010). Self-assembly of 2,6-naphthalenedicarboxylic acid and 4,4′-biphenyldicarboxylic acid on highly oriented pyrolytic graphite and Au(1 1 1) surfaces. Electrochimica Acta 55(27), 82878292.CrossRefGoogle Scholar
Peleshanko, S. & Tsukruk, V.V. (2008). The architectures and surface behavior of highly branched molecules. Prog Polym Sci (Oxford) 33(5), 523580.CrossRefGoogle Scholar
Ramesh, A.R. & Thomas, K.G. (2010). Directional hydrogen bonding controlled 2D self-organization of phenyleneethynylenes: From linear assembly to rectangular network. Chem Commun 46(20), 34573459.CrossRefGoogle ScholarPubMed
Reddy, B.N. & Deepa, M. (2012). Unraveling nanoscale conduction and work function in a poly(3,4-ethylenedioxypyrrole)/carbon nanotube composite by Kelvin probe force microscopy and conducting atomic force microscopy. Electrochimica Acta 70, 228240.CrossRefGoogle Scholar
Saito, N., Hayashi, K., Sugimura, H., Takai, O. & Nakagiri, N. (2001). Surface potentials of patterned organosilane self-assembled monolayers acquired by Kelvin probe force microscopy and ab initio molecular calculation. Chem Phys Lett 349(3-4), 172177.CrossRefGoogle Scholar
Spadafora, E.J., Saint-Aubin, K., Celle, C., Demadrille, R., Grévin, B. & Simonato, J.P. (2012). Work function tuning for flexible transparent electrodes based on functionalized metallic single walled carbon nanotubes. Carbon 50(10), 34593464.CrossRefGoogle Scholar
Surin, M., Samorì, P., Jouaiti, A., Kyritsakas, N. & Hosseini, M.W. (2007). Molecular tectonics on surfaces: Bottom-up fabrication of 1D coordination networks that form 1D and 2D arrays on graphite. Angewandte Chemie—Int Ed 46(1-2), 245249.CrossRefGoogle ScholarPubMed
Wei, Z., Wang, D., Kim, S., Kim, S.Y., Hu, Y., Yakes, M.K., Laracuente, A.R., Dai, Z., Marder, S.R., Berger, C., King, W.P., De Heer, W.A., Sheehan, P.E. & Riedo, E. (2010). Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328(5984), 13731376.CrossRefGoogle ScholarPubMed
Xu, L., Miao, X., Ying, X. & Deng, W. (2012a). Two-dimensional self-assembled molecular structures formed by the competition of Van der Waals forces and dipole-dipole interactions. J Phys Chem C 116(1), 10611069.CrossRefGoogle Scholar
Xu, L., Miao, X., Zha, B. & Deng, W. (2012b). Self-assembly polymorphism: Solvent-responsive two-dimensional morphologies of 2,7-ditridecyloxy-9-fluorenone by scanning tunneling microscopy. J Phys Chem C 116(30), 1601416022.CrossRefGoogle Scholar
Yan, L., Punckt, C., Aksay, I.A., Mertin, W. & Bacher, G. (2011). Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy. Nano Lett 11(9), 35433549.CrossRefGoogle Scholar
Yang, Y., Miao, X., Liu, G., Xu, L., Wu, T. & Deng, W. (2012). Self-assembly of dendronized non-planar conjugated molecules on a HOPG surface. Appl Surf Sci 263, 7378.CrossRefGoogle Scholar
Yilmaz, N., Ida, S. & Matsumoto, Y. (2009). Electrical conductivities of nanosheets studied by conductive atomic force microscopy. Mater Chem Phys 116(1), 6266.CrossRefGoogle Scholar
Yoosaf, K., Ramesh, A.R., George, J., Suresh, C.H. & George Thomas, K. (2009). Functional control on the 2D self-organization of phenyleneethynylenes. J Phys Chem C 113(27), 1183611843.CrossRefGoogle Scholar