Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-10T08:13:29.588Z Has data issue: false hasContentIssue false

Investigation of the crystal structure of antigorite

Published online by Cambridge University Press:  14 March 2018

J. Zussman*
Affiliation:
Department of Geology, University of Manchester

Extract

Selfridge (1936) examined by chemical, optical, and X-ray powder methods a large number of specimens of serpentine minerals (ideal formula H4Mg3Si2O9), many of which were known as antigorite. He found that nearly all gave similar powder photographs, indicating a close structural relationship, but that there were noticeable differences on the basis of which the specimens could be separated into two groups, one giving a photograph similar to that of chrysotile asbestos, and the other containing the varieties called antigorite. Gruner (1937) came to similar conclusions, and in addition he indexed most of the reflections using the cell dimensions a 5.33, b 18.5, c 2 x 7.33 Å., β 93°, remarking in particular on the correspondence between 001 reflections in the two groups.

Type
Research Article
Copyright
Copyright © 1954, The Mineralogical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aruja, (E.). 1943. Ph.D. thesis, Cambridge.Google Scholar
Aruja, (E.). 1944. Min. Mag., vol 27, p. 65.Google Scholar
Bates, (T.F.), Sand, (L.B.), and Mink, (J.F.), 1950.Scienc., vol. III , p. 512. [M.A. 11-174.]CrossRefGoogle Scholar
Bonney, (T.G.), 1908.Quart. Journ. Geol. Soe. Londo., vol. 64, p. 152.CrossRefGoogle Scholar
Brindleu, (G.W.), 1954.Amer. Min., vol. 39, p. 391.Google Scholar
Gruner, (J.W.), 1937.Amer. Min., vol.22, p. 97. [M.A. 7-93.]Google Scholar
Hanson, (A.W.), 1953.Aeta Cryst., vol. 6, p. 35.CrossRefGoogle Scholar
Hanson, (A.W.), Lipson, (H.), and Taylor, (C.A.), 1953.Proc. Roy. Soc. London, sect.., vol. 218, p. 371.Google Scholar
Hess, (H.H.), Smith, (R.J.), and Dengo, (G.), 1952.Amer. Mill., vol. 37, p. 68. [M.A. 12-31.]Google Scholar
Hughes, (W.) and Taylor, (C.A.), 1952.Journ. Sci. Instrument., vol. 30, p. 105.CrossRefGoogle Scholar
Noll, (W.) and Kircher, (H.), 1951. Neues Jahrb. Min. Monatshefte, p. 2.9. [M.A. 11510.]Google Scholar
Nacy, (B.), 1953.Econ. Geol., vol.48, p. 591.Google Scholar
Pavling, (L.), 1930.Proc. Nat. Acad. Sci. U.S.A., vol.16, p. 578. [M.A. 4-465.]CrossRefGoogle Scholar
Robinson, (K.) and Shaw (S, E.R..), 1952.Journ. Applied Physic., vol.3, p. 277.Google Scholar
Roy, (D.M.) and Roy, (R.), 1953.Bull. Geol. Soc. Amer., vol.64, p. 1468.(abstract);Google Scholar
Roy, (D.M.) Amer. Min., 1954. vol 39, p. 340.(abstract).Google Scholar
Selfridge, (G.C.), 1936.Amer. Min., vol. 21, p. 463. [M.A. 0-476.]Google Scholar
Taylor, (C.A.), Hinde, (R.M.), and Lipson, (H.), 1951.Acta Cryst., vol. 4, p. 261.CrossRefGoogle Scholar
Whittaker, (E.J. W.), 1952.Acta Cryst., vol. 5, p. 143. [M.A. 11-539.]CrossRefGoogle Scholar
Whittaker, (E.J. W.), 1953.Acta Cryst., vol.6, p. 747. [M.A. 12-337.]CrossRefGoogle Scholar
Zussman, (J.), 1953.Nature, Londo., vol. 172, p. 126. [M.A. 12-212.]CrossRefGoogle Scholar