Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-10-06T05:18:55.494Z Has data issue: false hasContentIssue false

Minor element chemistry of leucite and pseudoleucite

Published online by Cambridge University Press:  14 March 2018

C. M. B. Henderson*
Affiliation:
Geology Department, Imperial College, London, S.W. 7.

Summary

Leucite and pseudoleucite invariably have lower K/Rb ratios and higher K/Sr and K/Ba ratios than the groundmasses of the rocks in which they occur. The distribution of Rb, Sr, and Ba between K-rich minerals (e.g. alkali feldspars) and the liquids from which they crystallize is generally such that Rb is impoverished and Sr and Ba enriched, relative to K, in the crystallizing phase. Leucite shows the opposite relationship and this is attributed to the leucite structure being sensitive to the size and valency of the ions replacing K.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrer, (R. M.), 1950. Journ. Chem. Soc., p. 2342 [M.A. 11-291].Google Scholar
Barrer, (R. M.) and Denny, (P. J.), 1961. Ibid., p. 983 [M.A. 15-439].Google Scholar
Beattie, (I. R.), 1954. Acta Cryst., voh 7, p. 357 [M.A. 12-484].Google Scholar
Bowen, (N. L.) and Ellestad, (R. B.), 1937. Amer. Min., vol. 22, p. 409 [M.A. 7-30].Google Scholar
Butler, (J. R.), Bowden, (F.), and Smith, (A. Z.), 1962. Geochimica Acta, vol. 26, p. 89 [M.A. 16-361].Google Scholar
Clarke, (F. W.) and Steiger, (G.), 1900. Amer. Journ. Sci., set. 4, vol. 9, p. 117; Ibid., 1902, vol. 13, p. 27.CrossRefGoogle Scholar
Coombs, (D. S.), 1955. Min. Mag., vol. 30, p. 699 [M.A. 13-27].Google Scholar
Deer, (W. A.), Howie, (R. A.), and Zussman, (J.), 1963. Rock forming minerals, vol. 4. Longmans.Google Scholar
Fudali, (R. F.), 1963. Bull, Geol. Soc. Amer., vol. 74, p. 1101.Google Scholar
Gifford, (A. C.), 1961. The geology of Eastern Marangudzi, Southern Rhodesia. Unpublished Ph.D. Thesis, University of London.Google Scholar
Goldschmidt, (V. M.), 1937. Journ. Chem. Soc., p. 655 [M.A. 7-165].Google Scholar
Heier, (K. S.) and Adams, (J. A. S.), 1965. Physics and Chemistry of the earth, vol. 5, p. 253.Google Scholar
Larsen, (E. S.) and Buite, (B. F.), 1938. Amer. Min., vol. 23, p. 837 [M.A. 7-448].Google Scholar
Larsen, (E. S.), Hurclbut, (C. S.), Buie, (B. F.), and Burgess, (C. H.), 194l. Bull. Geol. Soc. Amer. vol. 52, p. 1841 [M.A. 8-242].Google Scholar
Rankama, (K.) and Sahama, (Th. G.), 1950. Geochemistry, University of Chicago Press.Google Scholar
Rees, (G.), 1960. The geology of West Marangudzi. Unpublished Ph.D. Thesis, University of London.Google Scholar
Reichert, (R.) and Erdléyi, (J.), 1935. Min. Petr. Mitt. (Tschermak), vol. 46, p. 237 [M.A. 6-130].Google Scholar
Ringwood, (A. E.), 1955. Geochimica Acta, vol. 7, p. 189 [M.A. 13-345].Google Scholar
Steiner, (A.), 1955. Min. Mat., vol. 30, p. 691 [M.A. 13-27].Google Scholar
Taylor, (S. R.), Emeleus, (C. H.), and Exley, (C. S.), 1956. Geochimica Acta, vol. 10, p. 224 [M.A. 14-123].CrossRefGoogle Scholar
Taylor, (W. H.), 1930. Zeit. Krist., vol. 74, p. 1 [M.A. 4-369].Google Scholar
Washington, (H. S.), 1906. Carnegie Inst. Washington Pub. 57, 199 pp.Google Scholar
Lies, (E. G.) and Chayes, (F.), 1960. Journ. Petr., vol. 1, p. 86 [M.A. 14-417].Google Scholar