Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-27T19:14:02.990Z Has data issue: false hasContentIssue false

Carbonatites and associated nephelinites from São Vicente, Cape Verde Islands

Published online by Cambridge University Press:  05 July 2018

C. de Ignacio*
Affiliation:
Departamento Petrología y Geoquímica, Facultad de Ciencias Geoló gicas, Universidad Complutense de Madrid, C/ José Antonio Novais, 2, 28040 Madrid, Spain
M. Muñoz
Affiliation:
Departamento Petrología y Geoquímica, Facultad de Ciencias Geoló gicas, Universidad Complutense de Madrid, C/ José Antonio Novais, 2, 28040 Madrid, Spain
J. Sagredo
Affiliation:
Departamento Petrología y Geoquímica, Facultad de Ciencias Geoló gicas, Universidad Complutense de Madrid, C/ José Antonio Novais, 2, 28040 Madrid, Spain
*

Abstract

The island of São Vicente has the most abundant carbonatite outcrops in the Cape Verde Islands. A field survey of the main outcrops has shown that they consist of extrusive carbonatites, carbonatite dykes and small apophyses of intrusive carbonatite. These outcrops are spatially related to nephelinites. The compositions of the extrusive carbonatites and dykes plot close to, and within, the magnesiocarbonatite field. In contrast, the intrusive carbonatites are calciocarbonatites, with similar average strontium contents to those of extrusive carbonatites and dykes (around 4000 ppm), but remarkably low barium, niobium and total rare earth element concentrations. Whole-rock geochemistry indicates a strong affinity between the nephelinites and intrusive carbonatites, such that the latter could represent fractionation products of the same parental magma. This is in agreement with radiogenic isotope geochemistry, which shows a very restricted range of compositions in the Sr, Nd and Pb systems. Fractionation from a common parental magma occurred in two main steps: high-temperature nephelinite crystallization and high-temperature carbonatite immiscibility. The carbonatitic melts crystallized in two different environments, as follows: (1) a shallow intrusive environment, giving rise to the early calciocarbonatite cumulates; and (2) a vapour-dominated, extrusive environment, producing the later magnesiocarbonatites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, M.C.A., Macedo, J.R., Silva, L.C., Serralheiro, A. and Peixoto Faria, A.F. (1979) Estudo geológico, petrológico e vulcanológico da ilha de Santiago (Cabo Verde). Garcia de Orta, 3, 4774.Google Scholar
Ancochea, E., Huertas, M.J., Hernán, F. and Brändle, J.L. (2010) Volcanic evolution of Sa˜o Vicente, Cape Verde Islands: the Praia Grande landslide. Journal of Volcanology and Geothermal Research, 198, 143157.CrossRefGoogle Scholar
Andersen, D.J. and Lindsley, D.H. (1985) New (and final) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. EOS Transactions, American Geophysical Union, 66, 416. Assunça˜o, C.F.T., Machado, F. and Gomes, R.A.D. (1965) On the occurrence of carbonatites in the Cape Verde Islands. Boletim da Sociedade Geológica de Portugal, 16, 179188.Google Scholar
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.CrossRefGoogle Scholar
Bell, K. and Blenkinsop, J. (1987) Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology, 15, 99102.2.0.CO;2>CrossRefGoogle Scholar
Bell, K. and Dawson, J.B. (1995) Peralkaline nephelinite/ carbonatite liquid immiscibility: comparison of phase composition in experiments and natural lavas from Oldoinyo Lengai.Pp. 100113. in: Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites. (Bell, K. and Keller, J., editors). IAVCEI Proceedings in Volcanology, 4. Springer, Berlin.Google Scholar
Bell, K. and Simonetti, A. (1996) Carbonatite magmatism and plume activity: implications for the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. Journal of Petrology, 37, 13211339.CrossRefGoogle Scholar
Bell, K. and Tilton, G.R. (2001) Nd, Pb and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity. Journal of Petrology, 42, 19271945.CrossRefGoogle Scholar
Brassinnes, S., Balaganskaya, E. and Demaiffe, D. (2005) Magmatic evolution of the differentiated ultramafic, alkaline and carbonatite intrusion of Vuoriyarvi (Kola Peninsula, Russia): a LA-ICP-MS study of apatite. Lithos, 85, 7692.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Williams, C.T. (2004) Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula, Russia.Pp. 294340. in: Phoscorites and Carbonatites, from mantle to mine: The key example of the Kola Alkaline Province, (Wall, F. and Zaitsev, A.N., editors). The Mineralogical Society, London.Google Scholar
Chauvel, C., Hofmann, A.W. and Vidal, P. (1992) HIMU-EM: the French Polynesian connection. Earth and Planetary Science Letters, 110, 99119.CrossRefGoogle Scholar
Christensen, B.P., Holm, P.M., Jambon, A. and Wilson, J.R. (2001) Helium, argon and lead isotopic composition of volcanics from Santo Antao and Fogo, Cape Verde Islands. Chemical Geology, 178, 127142.CrossRefGoogle Scholar
Cooper, A.F. and Patterson, L.A. (1995) Lithium in carbonatites-consequence of an enriched mantle source? Mineralogical Magazine, 59, 401408.Google Scholar
Dalton, J.A. and Wood, B.J. (1993) The compositions of primary carbonate melts and their evolution through wallrock reaction with the mantle. Earth and Planetary Science Letters, 119, 511525.CrossRefGoogle Scholar
de Ignacio, C., Mun˜oz, M., Sagredo, J., Fernández-Santín, S. and Johansson, Å. (2006) Isotope geochemistry and FOZO mantle component of the alkaline-carbonatitic association of Fuerteventura, Canary Islands, Spain. Chemical Geology, 232, 99113.CrossRefGoogle Scholar
de Paolo, D.J. and Wasserburg, G.J. (1976) Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249252.CrossRefGoogle Scholar
Doucelance, R., Escrig, S., Moreira, M., Gariépy, C. and Kurz, M.D. (2003) Pb-Sr-He isotope and trace element geochemistry of the Cape Verde Archipelago. Geochimica et Cosmochimica Acta, 67, 37173733.CrossRefGoogle Scholar
Doucelance, R., Hammouda, T., Moreira, M. and Martins, J.C. (2010) Geochemical constraints on depth of origin of oceanic carbonatites: the Cape Verde case. Geochimica et Cosmochimica Acta, 74, 72617282.CrossRefGoogle Scholar
Eggler, D.H. (1989) Carbonatites, primary melts, and mantle dynamics. Pp. 561579. in: Carbonatites: Genesis and Evolution, (Bell, K., editor). Unwin Hyman, London.Google Scholar
Gerlach, D.C., Cliff, R.A., Davies, G.R., Norry, M. and Hodgson, N. (1988) Magma sources of the Cape Verdes archipelago: isotopic and trace element constraints. Geochimica et Cosmochimica Acta, 52, 29792992.CrossRefGoogle Scholar
Hart, S.R. (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309, 753757.CrossRefGoogle Scholar
Hart, S.R. (1988) Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90, 273296.CrossRefGoogle Scholar
Hart, S.R., Hauri, E.H., Oschmann, L.A. and Whitehead, J.A. (1992) Mantle plumes and entrainment: isotopic evidence. Science, 256, 517520.CrossRefGoogle ScholarPubMed
Hauri, E.H., Whitehead, J.A. and Hart, S.R. (1994) Fluid dynamic and geochemical aspects of entrainment in mantle plumes. Journal of Geophysical Research, 99, 2427524300.Google Scholar
Hawkesworth, C.J., Kempton, P.D., Rogers, N.W., Ellam, R.M. and Van Calsteren, P.W. (1990) Continental mantle lithosphere and shallow level enrichment processes in the Earth’s mantle. Earth and Planetary Science Letters, 96, 256268.CrossRefGoogle Scholar
Henderson, C.M.B. and Gibb, F.G.F. (1983) Felsic mineral crystallization trends in differentiating alkaline basic magmas. Contributions to Mineralogy and Petrology, 84, 355364.CrossRefGoogle Scholar
Hodgson, N.A. and Le Bas, M.J. (1992) The geochemistry and cryptic zonation of pyrochlore from San Vicente, Cape Verde Islands. Mineralogical Magazine, 56, 201214.CrossRefGoogle Scholar
Hoernle, K., Tilton, G., Le Bas, M.J., Duggen, S. and Garbe-Schönberg, D. (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology, 142, 520542.CrossRefGoogle Scholar
Hogarth, D.D. (1977) Classification and nomenclature of the pyrochlore group. American Mineralogist, 62, 403410.Google Scholar
Holm, P.M., Grandvuinet, T., Friis, J., Wilson, J.R., Barker, A.K. and Plesner, S. (2008) An 40Ar-39Ar study of the Cape Verde hot spot: temporal evolution in a semistationary plate environment. Journal of Geophysical Research, 113, B08201, http:// dx.doi.org/10.1029/2007JB005339. Hofmann, A.W. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219229.Google Scholar
Hofmann, A.W. and White, W.M. (1982) Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters, 57, 421436.CrossRefGoogle Scholar
Huertas, M.J., Hernán, F., Ancochea, E. and Brändle, J.L. (2006) El Edificio Antiguo de la isla de San Vicente (Cabo Verde): características del sector occidental. Geogaceta, 40, 9598.Google Scholar
Jarosevitch, E.J. and Boatner, L.A. (1991) Rare-earth element reference samples for electron microprobe analysis. Geostandards Newsletter, 15, 397399.CrossRefGoogle Scholar
Jarosevitch, E.J., Nelen, J.A. and Norberg, J.A. (1980) Reference samples for electron microprobe analysis. Geostandards Newsletter, 4, 4347.CrossRefGoogle Scholar
Kalt, A., Hegner, E. and Satir, M. (1997) Nd, Sr, and Pb isotopic evidence for diverse lithospheric mantle sources of East African Rift carbonatites. Tectonophysics, 278, 3145.CrossRefGoogle Scholar
Kjarsgaard, B.A. and Hamilton, D.L. (1989) The genesis of carbonatites by immiscibility. Pp 388404. in: Carbonatites: Genesis and Evolution, (Bell, K., editor). Unwin Hyman, London.Google Scholar
Kjarsgaard, B.A., Hamilton, D.L. and Peterson, T.D. (1995) Peralkaline nephelinite/carbonatite liquid immiscibility: comparison between phase compositions in experiments and natural lavas. Pp. 163190. in: Carbonatite Volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. (Bell, K. and Keller, J., editors). Springer-Verlag, Berlin.Google Scholar
Kogarko, L.N. (1993) Geochemical characteristics of oceanic carbonatites from the Cape Verde Islands. South African Journal of Geology, 96, 119125.Google Scholar
Kogarko, L.N., Hellebrand, E. and Ryabchikov, I.D. (2005) Trace element partitioning between rhönite and silicate melt in Cape Verde volcanics. Geochemistry International, 43, 17.Google Scholar
Koster Van Groos, A.F. and Wyllie, P.J. (1963) Experimental data bearing on the role of liquid immiscibility in the genesis of carbonatites. Nature, 199, 801802.CrossRefGoogle Scholar
Le Bas, M.J. and Handley, C.D. (1979) Variation in apatite composition in ijolitic and carbonatitic igneous rocks. Nature, 279, 5456.CrossRefGoogle Scholar
Lee, W.J. and Wyllie, P.J. (1996) Liquid immiscibility in the join NaAlSi3O8-CaCO3 and the origin of calciocarbonatite magmas. Journal of Petrology, 37, 11251152.CrossRefGoogle Scholar
Lepage, L.D. (2003) ILMAT: an excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Computers and Geosciences, 29, 673678.CrossRefGoogle Scholar
Machado, F., Leme, J., Mojardino, J. and Seita, M.F. (1968) Carta geologica de Cabo Verde, noticia explicativa da folha da ilha Brava e dos ilheus Secos (na escala 1/5000). Garcia de Orta, 16, 123130.Google Scholar
Mata, J., Moreira, M., Doucelance, R., Ader, M. and Silva, L.C. (2010) Noble gas and carbon isotopic signatures of Cape Verde oceanic carbonatites: implications for carbon provenance. Earth and Planetary Science Letters, 291, 7083.CrossRefGoogle Scholar
McGuire, A.V., Francis, C.A. and Dyar, M.D. (1992) Mineral standards for electron microprobe analysis of oxygen. American Mineralogist, 77, 10871091.Google Scholar
Mitchell, J.G., Le Bas, M.J., Zielonka, J. and Furnes, H. (1983) On dating the magmatism of Maio, Cape Verde Islands. Earth and Planetary Science Letters, 64, 6176.CrossRefGoogle Scholar
Moura˜o, C., Mata, J., Doucelance, R., Madeira, J., Brum Da Silviera, A., Silva, L.C. and Moreira, M. (2010) Quaternary extrusive calciocarbonatite volcanism on Brava Island (Cape Verde): a nephelinite-carbonatite immiscibility product. Journal of African Earth Sciences, 56, 5964.CrossRefGoogle Scholar
Mourtada, S., LeBas, M.J. and Pin, C. (1997) Pétrogenèse des magnésio-carbonatites du complexe de Tamazert (Haut Atlas marocain). Comptes Rendues Academie des Sciences Paris, 325, 559564.Google Scholar
Nasraoui, M. and Bilal, E. (2000) Pyrochlores from the Lueshe carbonatite complex (Democratic Republic of Congo): a geochemical record of different alteration stages. Journal of Asian Earth Sciences, 18, 237251.CrossRefGoogle Scholar
Otto, J.W. and Wyllie, P.J. (1993) Relationships between silicate melts and carbonate-precipitating melts in CaO-MgO-SiO2-CiO2-H2O at 2 kbar. Mineralogy and Petrology, 48, 343365.CrossRefGoogle Scholar
Pilet, S., Hernandez, J., Sylvester, P. and Poujol, M. (2005) The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth and Planetary Science Letters, 236, 148166.CrossRefGoogle Scholar
Plesner, S., Holm, P.M. and Wilson, J.R. (2002) 40Ar-39Ar geochronology of Santo Anta˜o, Cape Verde Islands. Journal of Volcanology and Geothermal Research, 120, 103121.CrossRefGoogle Scholar
Prestvik, T., Torske, T., Sundvoll, B. and Karlsson, H. (1999) Petrology of early Tertiary nephelinites off mid-Norway. Additional evidence for an enriched endmember of the ancestral Iceland plume. Lithos, 46, 317330.CrossRefGoogle Scholar
Seifert, W., Kämpf, H. and Wasternack, J. (2000) Compositional variation in apatite, phlogopite and other accessory minerals of the ultramafic Delitzsch complex, Germany: implication for cooling history of carbonatites. Lithos, 53, 81100.CrossRefGoogle Scholar
Serralheiro, A. (1976) A geologia da Ilha de Santiago (Cabo Verde). Boletim de Museu e Labóratorio de Mineralogia e Geologia Faculdade de Ciência, 14, 1157.Google Scholar
Silva, L., Le Bas, M.J. and Robertson, A.H.F. (1981) An oceanic carbonatite volcano on Santiago, Cape Verde Islands. Nature, 294, 644645.CrossRefGoogle Scholar
Stoppa, F. and Liu, Y. (1995) Chemical composition and petrogenetic implications of apatites from some ultra-alkaline Italian rocks. European Journal of Mineralogy, 7, 391402.CrossRefGoogle Scholar
Subbotin, V.V and Subbotina, G.F. (2000) Pyrochlore group minerals from phoscorites and carbonatites of the Kola Peninsula. Vestnik MGTU, 3, 273284. [in Russian].Google Scholar
Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Pp. 313345. in: Magmatism in the Ocean Basins. (Saunders, A.D., and Norry, M.J., editors). Geological Society of London, Special Publication, 42. The Geological Society, London.CrossRefGoogle Scholar
Ulrych, J., Nizˇňansky, D., Pertlik, F., Giester, G., Ertl, A. and Brandstätter, F. (2006) Clinopyroxene from an alkal i pyroxenite xenol i t h , Louè ná-Oberwiesenthal Volcanic Centre, Bohemian Massif: crystal chemistry and structure. Geological Quarterly, 50, 257264.Google Scholar
Veksler, I.V., Petibon, C., Jenner, G.A., Dorfman, A.M. and Dingwell, D.B. (1998) Trace element partitioning in immiscible silicate-carbonate liquid systems: an initial experimental study using a centrifuge autoclave. Journal of Petrology, 39, 20952104.CrossRefGoogle Scholar
Wallace, M.E. and Green, D.H. (1988) An experimental determination of primary carbonatite magma composition. Nature, 335, 343346.CrossRefGoogle Scholar
Walter, A.V., Nahon, D., Flicoteaux, R., Girard, J.P. and Melfi, A. (1995) Behaviour of major and trace elements and fractionation of REE under tropical weathering of a typical apatite-rich carbonatite from Brazil. Earth and Planetary Science Letters, 136, 591602.CrossRefGoogle Scholar
Weaver, B.L. (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters, 104, 381397.CrossRefGoogle Scholar
Williams, C.T., Wall, F., Woolley, A.R. and Phillipo, S. (1997) Compositional variation in pyrochlore from the Bingo carbonatite, Zaı¨re, Journal of African Earth Sciences, 25, 137145.CrossRefGoogle Scholar
Wones, D.R. and Eugster, H.P. (1965) Stability of biotite: experiment, theory and application. American Mineralogist, 50, 12281272.Google Scholar
Woolley, A.R. and Kempe, D.R.C. (1989) Carbonatites: nomenclature, average chemical compositions and element distribution.Pp. 114. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Wyllie, P.J. and Lee, W.J. (1998) Model system controls on conditions for formation of magnesiocarbonatite and calciocarbonatite magmas from the mantle. Journal of Petrology, 39, 18851893.CrossRefGoogle Scholar
Zaitsev, A. and Polezhaeva, L. (1994) Dolomite-calcite textures in early carbonatites of the Kovdor ore deposit, Kola peninsula, Russia: their genesis and application of calcite-dolomite geothermometry. Contributions to Mineralogy and Petrology, 115, 339344.CrossRefGoogle Scholar