Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-21T01:32:44.408Z Has data issue: false hasContentIssue false

Effect of crystal composition and growth rate on sector zoning in solid solutions grown from aqueous solutions

Published online by Cambridge University Press:  05 July 2018

A. G. Shtukenberg*
Affiliation:
Crystallography Department, Geological Faculty, St.Petersburg State University, Universitetskaya emb., 7/9, 199034 St.Petersburg, Russia
YU. O. Punin
Affiliation:
Crystallography Department, Geological Faculty, St.Petersburg State University, Universitetskaya emb., 7/9, 199034 St.Petersburg, Russia
O. I. Artamonova
Affiliation:
Crystallography Department, Geological Faculty, St.Petersburg State University, Universitetskaya emb., 7/9, 199034 St.Petersburg, Russia
*

Abstract

Sector zoning in solid solutions of Tutton’s salts (NH4)2M(SO4)2.6H2O (M = Co, Ni, Zn, Mg) and nitrates of divalent metals Me(NO3)2 (Me = Sr, Pb, Ba) grown from low-T aqueous solutions under controlled conditions is studied. The effect of crystal composition and growth rate (supersaturation) on the intersector difference in concentrations of isomorphic components is examined experimentally and modelled theoretically based on the phenomenological approach to crystallization in a ‘solid solution—aqueous solution’ system. Calculations show a predominating contribution of the selective adsorption phenomena in the formation of a sector-zoned crystal with usually minor, but sometimes a major contribution of growth kinetics.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Pcurrently at: Porto Conte Ricerche srl SP 55 Porto Conte-Capo Caccia, km 8,300 Loc. Tramariglio, Alghero I-07041 Sassari, Italy

References

Albarede, F. and Bottinga, Y. (1972) Kinetic disequilibrium in trace element partitioning between phenocryst and host lava. Geochimica et Cosmochimica Acta, 36, 141 — 156.CrossRefGoogle Scholar
Azimov, P.Ya. and Shtukenberg, A.G. (2000) Simulation of phase diagrams for water-salt systems with solid solutions. Russian Journal of Inorganic Chemistry, 45, 1302—1309.Google Scholar
Bosi, F., Belardi, G. and Ballirano, P. (2009) Structural features in Tutton's salts K2[M2+(H2O)6](SO4)2, with M2+ = Mg, Fe, Co, Ni, Cu, and Zn. American Mineralogist, 94, 74—82.CrossRefGoogle Scholar
Bosze, S. and Rakovan, J. (2002) Surface-structure- controlled sectoral zoning of the rare earth elements in fluorite from Long Lake, New York, and Bingham, New Mexico, USA. Geochimica et Cosmochimica Acta, 66, 997—1009.CrossRefGoogle Scholar
Bulka, G.R., Vinokurov, V.M., Nizamutdinow, N.M. and Hasanova, N.M. (1980) Dissymmetrization of crystals: theory and experiment. Physics and Chemistry ofMinerals, 6, 283—293.Google Scholar
Burton, J.A., Prim, R.C. and Slichter, W.P. (1953) The distribution of solute in crystals grown from the melt. Journal of Chemical Physics, 21, 1987—1996.Google Scholar
Chakhmouradian, A.R., Halden, N.M., Mitchell, R.H. and Horvath, L. (2007) Rb-Cs-rich rasvumite and sector-zoned ‘loparite-(Ce)’ from Mont Saint-Hilaire (Quebec, Canada) and their petrologic significance. European Journal of Mineralogy, 19, 533—546.CrossRefGoogle Scholar
Chepurov, A.I., Zhimulev, E.I., Fedorov, I.I. and Sonin, V.M. (2006) Inclusions of metal solvent and coloration of the boron-bearing diamond single crystals. Z api s ki Vserossiiskogo Mineralogicheskogo Obshchestva, 135(6), 97—101. (in Russian).Google Scholar
Chouinard, A., Paquette, J. and Williams-Jones, A.E. (2005) Crystallographic controls on trace-element incorporation in Auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina. The Canadian Mineralogist, 43, 951—963.CrossRefGoogle Scholar
Cressey, G., Wall, F. and Cressey, B.A. (1999) Differential REE uptake by sector growth of monazite. Mineralogical Magazine, 63, 813—828.Google Scholar
Downes, M.J. (1974) Sector and oscillatory zoning in calcic augites from Mt. Etna, Sicily. Contributions to Mineralogy and Petrology, 47, 187—196.CrossRefGoogle Scholar
Dowty, E. (1976) Crystal structure and crystal growth II. Sector zoning in minerals. American Mineralogist, 61, 460—469.Google Scholar
Ferguson, A.K. (1973) On hour-glass sector zoning in clinopyroxene. Mineralogical Magazine, 39, 321—325.CrossRefGoogle Scholar
Fock, A. (1897) Ueber die Löslichkeit von Mischkrystalln und die Grösse des Krystall- moleküls. Zeitschrift für Kristallographie und Mineralogie, 4—5, 367.Google Scholar
Franke, V.D., Punin, Yu.O., Smetannikova, O.G. and Kenunen, D.S. (2007) Adsorption mechanisms of non-equilibrium impurity incorporation in the coarse of crystal growth. Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva, 136(2), 90—104. (in Russian).Google Scholar
Hanchar, J.M., Finch, R.J., Hoskin, P.W., Watson, E.B., Cherniak, D.J. and Mariano A.N. (2001) Rare earth elements in synthetic zircon: Part I. Synthesis, and rare earth element and phosphorus doping. American Mineralogist, 86, 667—680.CrossRefGoogle Scholar
Harkins, E. and Hollister, L.S. (1977) Sector-zoning of clinopyroxene from a weakly metamorphosed diabase. American Mineralogist, 62, 390—394.Google Scholar
Hill, A.E. and Taylor, W.J. Jr. (1938) Ternary systems. XXIII. Solid solutions among the picromerite double salts at 25°C. The zinc, copper and nickel ammonium sulfates. Journal of American Chemical Society, 60, 1099—1104.CrossRefGoogle Scholar
Hodgson, N.A. and Le Bas, M.J. (1992) The geochemistry and cryptic zonation of pyrochlore from San Vicente, Cape Verde Islands. Mineralogical Magazine, 56, 201—214.CrossRefGoogle Scholar
Hollister, L.S. (1970) Origin, mechanism, and consequences of compositional sector zoning in staur- olite. American Mineralogist, 55, 742—766.Google Scholar
Hollister, L.S. and Gancarz, A. (1971) Compositional sector-zoning in clinopyroxene from the Narce Area, Italy. American Mineralogist, 56, 959—979.Google Scholar
Janeczek, J. and Sachanbinski, M. (1992) Babingtonite, Y-Al-rich titanite, and zoned epidote from the Strzegom pegmatites, Poland. European Journal of Mineralogy, 4, 307—319.CrossRefGoogle Scholar
Kahr, B. and McBride, J.M. (1992) Optical anomalous crystals. Angewandte Chemie International Edition in English, 31, 1—26.CrossRefGoogle Scholar
Kerestedjian, T. (1997) Chemical and morphological features of arsenopyrite, concerning its use as a geothermometer. Mineralogy and Petrology, 60, 231—243.CrossRefGoogle Scholar
Kouchi, A., Hosoya, S., Kitamura, M., Takei, H. and Sunagawa, I. (1983a) The effects of crystallographic orientation, interface type and growth kinetics on Ni distribution between olivine and its melt. Physics and Chemistry of Minerals, 9, 167—172.CrossRefGoogle Scholar
Kouchi, A., Sugawara, Y., Kashima, K. and Sunagawa, I. (1983b) Laboratory growth of sector zoned clinopyroxenes in the system CaMgSi2O6- CaTiAl2O6. Contributions to Mineralogy and Petrology, 83, 177—184.CrossRefGoogle Scholar
Kuschel, F., König, A.N. and Gropp, R. (1982a) Crystal growth in magnetic fields (I). Crystallization of Me(NH4)2(SO4)2-6H2O (Me = Zn, Cu, Ni, Fe) from aqueous solutions in moderate magnetic fields. Crystal Research and Technology, 17, 793—799.Google Scholar
Kuschel, F., König, A.N. and Gropp, R. (1982b) Crystal growth in magnetic fields (II). Crystallization of Co(NH4)2(SO4)2-6H2O from aqueous solutions in high magnetic fields. Crystal Research and Technology, 17, 801—906.Google Scholar
Leung, J.S. (1974) Sector-zoned titanaugites: Morphology, crystal chemistry, and growth. American Mineralogist, 59, 127—138.Google Scholar
Lippmann, F. (1980) Phase diagrams depicting the aqueous solubility of mineral systems. Neues Jahrbuch für Mineralogie Abhandlungen, 139, 1—25.Google Scholar
Maiwa, K., Plomp, M., van Enckevort, W.J.P. and Bennema, P. (1998) AFM observation of barium nitrate ﹛111﹜ and ﹛100﹜ faces: spiral growth and two-dimensional nucleation growth. Journal of Crystal Growth, 186, 214—223.Google Scholar
Mokhtari, A. and Velde, D. (1987) Sector-zoned kaersutite in camptonites from Morocco. Mineralogical Magazine, 51, 151 — 156.CrossRefGoogle Scholar
Mullin, J.W. (1972) Crystallization. 2nd edition, Butterworths, London.Google Scholar
Nakamura, Y. (1973) Origin of sector-zoning of igneous clinopyroxenes. American Mineralogist, 58, 986—990.Google Scholar
Popov, V.A. and Popova, V.I. (1983) Sector zoning in amazonite: new evidence for the primary distribution of its color centers. Doklady Akdemy Nauk USSR, 268, 417—419. (in Russian).Google Scholar
Punin, Yu.O., Smetannikova, O.G., Zhogina, A.N. and Artamonova, O.I. (1999) Sector zoning and twinning in crystals of K2SO4—(NH4)2SO4 solid solutions. Vestnik St.Peterburgskogo Gosudarstvennogo Universiteta, Ser. 7, N 3, 62—67. (in Russian).Google Scholar
Rakovan, J. and Reeder, R.J. (1996) Intracrystalline rare earth element distribution in apatite: Surface structural influence on incorporation during growth. Geochimica et Cosmochimica Acta, 60, 4435—4445.CrossRefGoogle Scholar
Ranlov, J. and Dymek, R.F. (1991) Compositional zoning in hydrothermal aegirine from fenites in the Proterozoic Gardar Province, south Greenland. European Journal of Mineralogy, 3, 837—853.CrossRefGoogle Scholar
Reeder, R.J. and Prosky, J.L. (1986) Compositional sector zoning in dolomite. Journal of Sedimentary Petrology, 56, 237—247.Google Scholar
Sánchez-Pastor, N., Pina, C.M. and Fernádez-Díaz, L. (2006) Relationship between crystal morphology and composition in the (Ba,Sr)SO4-H2O solid solution- aqueous solution system. Chemical Geology, 225, 266—277.CrossRefGoogle Scholar
Shearer, C.K. and Larsen, L.M. (1994) Sector-zoned aegerine from the Ilimaussaq alkaline intrusion, South Greenland: Implications for trace-element behavior in pyroxene. American Mineralogist, 79, 340—352.Google Scholar
Shimuzu, N. (1981) Trace element incorporation into growing augite phenocryst. Nature, 289, 575—577.Google Scholar
Shtukenberg, A.G. and Punin, Yu.O. (2007) Optically Anomalous Crystals. (B. Kahr, editor) Springer, Dordrecht, Netherlands.Google Scholar
Shtukenberg, A.G., Rozhdestvenskaya, I.V., Popov, D.Yu. and Punin, Yu.O. (2004) Kinetic ordering of atoms in sodium chlorate-bromate solid solutions. Journal of Solid State Chemistry, 177, 4732—4742.CrossRefGoogle Scholar
Shtukenberg, A.G., Euler, H., Kirfel, A. and Popov, D.Yu. (2006a) Symmetry reduction and cation ordering in solid solutions of strontium-lead and barium-lead nitrates. Zeitschrift fir Kristallographie, 221, 681—688.Google Scholar
Shtukenberg, A.G., Punin, Yu.O. and Azimov, P. (2006b) Crystallization kinetics in binary solid solution—aqueous solution systems. American Journal of Science, 306, 553—574.Google Scholar
Shtukenberg, A.G., Punin, Yu.O. and Frank-Kamenetskaya, O.V. (2006c) The kinetic ordering and growth dissymmetrisation in crystalline solid solutions. Russian Chemical Reviews, 75, 1083—1106.Google Scholar
Tauson, V.L. (2005) On the formation of growth sector zoning in izomorphous mixed crystals. Geochemistry International, 43, 410—413.Google Scholar
Tiller, W.A. (1986) The role of strongly interface/ surface adsorbed impurities on the purification process via crystallization methods. Journal of Crystal Growth, 75, 132—138.CrossRefGoogle Scholar
Tiller, W.A. and Ahn, K.-S. (1980) Interface field effects on solute redistribution during crystallization. Journal of Crystal Growth, 49, 483—501.CrossRefGoogle Scholar
van Hinsberg, V.J. and Schumacher, J.C. (2007) Intersector element partitioning in tourmaline: a potentially powerful single crystal thermometer. Contributions to Mineralogy and Petrology, 153, 289—301.CrossRefGoogle Scholar
van Hinsberg, V.J., Schumacher, J.C., Kearns, S., Mason, P.R. and Franz, G. (2006) Hourglass sector zoning in metamorphic tourmaline and resultant major and trace-element fractionation. American Mineralogist, 91, 717—728.CrossRefGoogle Scholar
Watson, E.B. (1996) Surface enrichment and trace- element uptake during crystal growth. Geochimica et Cosmochimica Acta, 60, 5013—5020.CrossRefGoogle Scholar
Watson, E.B. and Liang, Y. (1995) A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. American Mineralogist, 80, 1179—1187.CrossRefGoogle Scholar
Wu, L.J., Chen, W.C., Li, C.R., Liu, Y.C., Ma, W.Y. and Liang, J.K. (2000) Crystallization of PbxSr1 —x(NO3)2 solid solutions from aqueous solutions. Crystal Research and Technology, 35, 601—608.3.0.CO;2-P>CrossRefGoogle Scholar
Zhmurova, Z.I. and Khaimov-Mal’kov, V.Ya. (1970) Distribution of isomorphous components in crystallization from aqueous solution. Soviet Physics Crystallography, 15, 112—115.Google Scholar