Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T09:25:46.187Z Has data issue: false hasContentIssue false

The first proof of protonated anion tetrahedra in the tsumcorite-type compounds

Published online by Cambridge University Press:  05 July 2018

T. Mihajlović*
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Geozentrum, Althanstr. 14, A-1090 Wien, Austria
H. Effenberger
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Geozentrum, Althanstr. 14, A-1090 Wien, Austria

Abstract

Hydrothermal synthesis produced the new compound SrCo2(AsO4)(AsO3OH)(OH)(H2O). The compound belongs to the tsumcorite group (natural and synthetic compounds with the general formula M(1)M(2)2(XO4)2(H2O,OH)2; M(1)1+,2+,3+ = Na, K, Rb, Ag, NH4, Ca, Pb, Bi, Tl; M(2)2+,3+ = Al, Mn3+, Fe3+, Co, Ni, Cu, Zn; and X5+,6+ = P, As, V, S, Se, Mo). It represents (1) the first Sr member, (2) the until now unknown [7]-coordination for the M(1) position, (3) the first proof of (partially) protonated arsenate groups in this group of compounds, and (4) a new structure variant.

The crystal structure of the title compound was determined using single-crystal X-ray diffraction data. The compound is monoclinic, space group P21/a, with a = 9.139(2), b = 12.829(3), c = 7.522(2) Å, β = 114.33(3)°, V = 803.6(3) Å3, Z = 4 [wR2 = 0.065 for 3530 unique reflections]. The hydrogen atoms were located experimentally.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansell, H.G., Roberts, A.C., Dunn, P.J., Birch, W.D., Ansell, V. E. and Grice, J.D. (1992) Ferrilotharmeyerite, a new Ca–Zn–Fe3+ hydroxyl arsenate from Tsumeb, Namibia. The Canadian Mineralogist, 30, 215217.Google Scholar
Baur, W.H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 11951215.CrossRefGoogle Scholar
Beran, A., Giester, G. and Libowitzky, E. (1997) The hydrogen bond system in natrochalcite-type compounds- an FTIR spectroscopic study of the H3O2 unit. Mineralogy and Petrology, 61, 223235.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brugger, J., Krivovichev, S., Kolitsch, U., Meisser, N., Andrut, M., Ansermet, S. and Burns, P.C. (2002) Description and crystal structure of manganlotharmeyerite, Ca(Mn3+, □, Mg)2;{AsO4, [AsO2(OH)2]}2 (OH, H2O)2, from the Starlera Mn deposit, Swiss Alps, and a redefinition of lotharmeyerite. The Canadian Mineralogist, 40, 15971608.CrossRefGoogle Scholar
Dowty, E. (1999) ATOMS 5.0, a computer program for displaying atomic structures. Kingsport, Tennessee, USA.Google Scholar
Effenberger, H., Krause, W., Bernhardt, H.-J. and Martin, M. (2000) On the symmetry of tsumcorite group minerals based on the new species rappoldite and zincgartrellite. Mineralogical Magazine, 64, 11091126.CrossRefGoogle Scholar
Ferraris, G. and Ivaldi, G. (1984) X–OH and O–H¨˙O bond lengths in protonated oxyanions. Acta Crystallographica, B40, 16.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs bond length in O¨˙O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Fischer, R.X. and Tillmanns, E. (1988) The equivalent isotropic displacement factor. Acta Crystallographica, C44, 775776.Google Scholar
Fleet, M.E. (1976) Distortion parameters for coordination polyhedra. Mineralogical Magazine, 40, 531533.CrossRefGoogle Scholar
Giester, G. and Zemann, J. (1987) The crystal structure of the natro chalcite type compounds Me+Cu2(OH)(zO4.2H2O [Me+ = Na, K, Rb; z = S, Se], with a special reference to the hydrogen bonds. Zeitschrift für Kristallographie, 179, 431442.CrossRefGoogle Scholar
Jeffrey, G.A. (1997) An Introduction to Hydrogen Bonding. Oxford University Press, New York.Google Scholar
Kampf, A.R., Shigley, J.E. and Rossman, G.R. (1984) New data on lotharmeyerite. Mineralogical Record, 15, 223226.Google Scholar
Keller, P., Hess, H. and Zettler, F. (1979) Ladungsbilanzen an den verfeinerten Kristallstrukturen von Libethenit, Adamin und Co2[OH/AsO4] und ihre Wasserstoffbrückenbindungen. Neues Jahrbuch für Mineralogie, Abhandlungen, 134, 147156.Google Scholar
Krause, W., Belendorff, K., Bernhardt, H.-J., McCammon, C., Effenberger, H. and Mikenda, W. (1998) Crystal chemistry on the tsumcorite-group minerals, New data on ferrilotharmeyerite, tsumcorite, thometzekite, mounanaite, helmutwinklerite, and a redefinition of gartrellite. European Journal of Mineralogy, 10, 179206.CrossRefGoogle Scholar
Krause, W., Effenberger, H., Bernhardt, H.-J. and Martin, M. (1999) Cobaltlotharmeyerite, Ca(Co, Fe, Ni)2(AsO4(OH, H2O)2, a new mineral from Schneeberg, Germany. Neues Jahrbuch für Mineralogie, Monatshefte, 1999, 505517.Google Scholar
Krause, W., Bernhardt, H.-J., Effenberger, H. and Martin, M. (2001) Cobalttsumcorite and nickellotharmeyerite, two new minerals from Schneeberg, Germany: description and crystal structure. Neues Jahrbuch für Mineralogie, Monatshefte, 2001, 558576.Google Scholar
Krause, W., Bernhardt, H.-J., Effenberger, H. and Witzke, T. (2002) Schneebergite and nickelschneebergite from Schneeberg, Saxony, Germany: The first Bi-bearing members of the tsumcorite group. European Journal of Mineralogy, 14, 115126.CrossRefGoogle Scholar
Lutz, H.D. (2003) Structure and strength of hydrogen bonds in inorganic solids. Journal of Molecular Structure, 646, 227236.CrossRefGoogle Scholar
Mihajlović, T. (2003) SrCo2(AsO4)2(H2O)2 – the first Sr member of the tsumcorite group. Zeitschrift für Kristallographie, Supplement Issue, 20, 144.Google Scholar
Mörtel, R. and Lutz, H.D. (2003) Hydrogen bonds in solid hydroxides, a bond valence approach. Journal of Molecular Structure, 648, 171176.CrossRefGoogle Scholar
Nonius, (1999) ‘Collect’ data collection software. Nonius B.V.Google Scholar
Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Pp. 307326 in: Methods in Enzymology (Carter, C.W. Jr. and Sweet, R.M., editors). Macromolecular Crystallography, 276, Academic Press, London.Google Scholar
Poater, J., Fradera, X., Solà, M., Duran, M. and Simon, S. (2003) On the electron-pair nature of the hydrogen bond in the framework of the atoms in molecules theory. Chemical Physics Letters, 369, 248255.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (1997) SHELXL-97, a Program for Crystal Structure Refinement. University of Göttingen, Germany.Google Scholar
Steiner, T. (2002) The hydrogen bond in the solid state. Angewandte Chemie, International Edition, 41, 4876.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Tillmanns, E. and Gebert, W. (1973) The crystal structure of tsumcorite, a new mineral from the Tsuemb mine S.W. Africa. Acta Crystallographica, B29, 27892794.CrossRefGoogle Scholar
Wildner, M. (1992) On the geometry of Co(II)O6 polyhedra in inorganic compounds. Zeitschrift für Kristallographie, 202, 5170.CrossRefGoogle Scholar