Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-13T02:04:24.891Z Has data issue: false hasContentIssue false

Gittinsite-type M1+-M3+-diarsenates (M1+ = Li,Na; M3+ = Al, Sc,Ga): insights into an unexpected isotypy and crystal chemistry of diarsenates

Published online by Cambridge University Press:  05 July 2018

K. Schwendtner*
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Geozentrum, Althanstr. 14, A-1090 Wien, Austria
U. Kolitsch
Affiliation:
Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria

Abstract

Hemimorphic crystals of four M1+-M3+-diarsenates (M1+ = Li, Na; M3+ = Al, Sc, Ga) were prepared by mild hydrothermal methods (T = 493 K) at very low pH values of ~1–1.5. The crystalst ructures of all compounds were determined using single-crystal X-ray diffraction data (Mo-Kα, CCD detector, 293 K) and were found to be isotypic with gittinsite (CaZrSi2O7), and the later described synthetic compound LiFeAs2O7. Crystaldat a for LiAlAs2O7, LiScAs2O7, LiGaAs2O7 and NaScAs2O7, respectively, are: space group C2 (no. 5), a = 6.583(1), 6.790(1), 6.638(1), 6.959(1), b = 8.007(2), 8.532(2), 8.181(2), 8.712(2), c = 4.635(1), 4.845(1), 4.696(1), 4.817(1) Å, β = 104.13(3), 103.75(3), 104.01(3), 102.05(3)°, V = 236.92(9), 272.64(9), 247.43(9), 285.6(1) Å3; Z = 2. The structure models were refined anisotropically to R1(F) = 0.0152, 0.0157, 0.0144, 0.0199, respectively.

The non-centrosymmetric framework structure contains isolated As2O7 groups (in staggered configuration; As–O–As angles show a narrow range between 130.32(16) and 139.8(2)°) which share their O ligands with MO6 (M = Al, Sc, Ga) octahedra and distorted Li/NaO4 tetrahedra. The strongly distorted LiO4 tetrahedra exhibit an average Li–O bond length of 2.071 Å, but four longer Li–O bonds (between 2.781–3.042 Å) also contribute to give a reasonable bond-valence sum for the Li atoms, and reflect an effective [4+4]-coordination. The Na compound is also characterized by four short and four long Na–O bonds; the Na atom appears slightly overbonded. The average Sc–O bond length in the two Sc representatives is 2.083 and 2.097 Å.

Details of the topology and crystal chemistry are discussed in comparison with those of gittinsite and other diarsenates, and correlations are noted. A reevaluation of the geometry of As2O7 groups in 58 presently known and structurally characterized inorganic diarsenates shows a mean As–O–As angle of 124.2° (excluding 180° angles). The As–O bond lengths to the central bridging O atom are elongated to a mean value of 1.755 Å, whereas all other bond lengths are shortened (mean value 1.666 Å); the overall mean As–O bond length is 1.688 Å.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1997) Handbook of Mineralogy: Vol. III: Halides, Hydroxides, Oxides. Mineral Data Publishing, Tucson, USA, 625 pp.Google Scholar
Ayed, B., Abbdallah, A.H. and Hadded, A. (2004) RbMn6(As2O7)2(As3O10): a new manganese(II) arsenate. Acta Crystallographica, E60, i52–i54.Google Scholar
Baran, E.J., Schwendtner, K. and Kolitsch, U. (2006) Vibrational spectra of three new diarsenates containing scandium (III). Journal of Raman Spectroscopy, 37, 1335–1340.CrossRefGoogle Scholar
Baur, W.H. (1981) Interatomic distance predictions for computer simulation of crystal structures Pp. 31–52 in: Structure and Bonding in Crystals, II, (O’Keeffe, M. and Navrotsky, A., editors). Academic Press, New York, USA.Google Scholar
Brandenburg, K. (2005) Diamond. CrystalImpact GbR, Bonn, Germany.Google Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.Google Scholar
Brown, I.D. (1981) Structure and bonding in crystals Pp. 1–30 in: Structure and Bonding in Crystals, II, (O’Keeffe, M. and Navrotsky, A., editors). Academic Press, New York, USA.Google Scholar
Brown, I.D. and Shannon, R.D. (1973) Empirical bond strength-bond-length curves for oxides. Acta Crystallographica, A29, 266–282.Google Scholar
Cambon, O., Haines, J., Fraysse, G., Detaint, J., Capelle, B. and Van der Lee, A. (2005) Piezoelectric characterization and thermalstabil ity of a highperformance α-quartz-type material, gallium arsenate. Journal of Applied Physics, 97, 074110/ 074111–074110/074117.CrossRefGoogle Scholar
Carvajal, J.J., Parreu, I., Sole, R., Solans, X., Diaz, F. and Aguilo, M. (2005) Growth and structural characterization of Rb3Yb2(PO4)3: A new material for laser and nonlinear optical applications. Chemistry of Materials, 17, 6746–6754.CrossRefGoogle Scholar
Chani, V.I., Shimamura, K., Endo, S. and Fukuda, T. (1997) New nonlinear optical crystals of KTiOPO4 (KTP) family. Materials Research Society Symposium Proceedings, 453, 265–270.Google Scholar
Cruickshank, D.W.J., Lynton, H. and Barclay, G.A. (1962) A reinvestigation of the crystalstructure of thortveitite Sc2Si2O7 . Acta Crystallographica, 15, 491–498.CrossRefGoogle Scholar
Driss, A. and Jouini, T. (1988) Structure of Na2AlBAs4O14, a condensed aluminoboroarsenate. Acta Crystallographica, C44, 791–794.Google Scholar
Driss, A. and Jouini, T. (1990) Structure of a triarsenate – Na3H2As3O10 . Acta Crystallographica, C46, 1185–1188.Google Scholar
D’yvoire, F., Bretey, E. and Collin, G. (1988) Crystal structure, non-stoichiometry and conductivity of IINa3M2(AsO4)3 (M = Al, Ga, Cr, Fe). Solid State Ionics, 28–30, 1259–1264.Google Scholar
Effenberger, H. and Pertlik, F. (1993) Crystal structures of Ag5Cu(AsO4)(As2O7) and Ag7Cu(As2O7)2Cl with a survey on pyroarsenate anions. Zeitschrift für Kristallographie, 207, 223–236.Google Scholar
Fan, N.Y. and Wang, S.L. (1996) BaZn2(HAs2O7)AsO4: a novelbarium zinc arsenate containing Zn4Oi6 clusters and hydrogen diarsenate groups. Inorganic Chemistry, 35, 4708–4712.CrossRefGoogle Scholar
FIZ (2006) Inorganic Crystal Structure Database. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany.Google Scholar
Graia, M., Driss, A. and Jouini, T. (1999) Crystal structure of sodium calcium cyclo-tetraarsenate(V), CaNa2As4Oi2 . Zeitschrift für Kristallographie – New Crystal Structures, 214, 1–2.CrossRefGoogle Scholar
Harrison, W.T.A. and Phillips, M.L.F. (1999) Syntheses, structures, and properties of RbScFAsO4 and CsScFAsO4: scandium-containing analogues of potassium titanylphosphate (KTiOPO4). Chemistry of Materials, 11, 3555–3560.CrossRefGoogle Scholar
Harrison, W.T.A., Gier, T.E., Bu, X. and Stucky, G.D. (1996) Synthesis and characterization of a new family of thermally stable open-framework zincophosphate/ arsenate phases: M3Zn4O(XO4)3.nH2O (M = Na, K, Rb, Li, …; X = P, As; n = ∼3.5–6). Crystal structures of Rb3Zn4O(PO4)3.3.5H2O, K3Zn4O(AsO4)3.4H2O, and Na3Zn4O(PO4)3.6H2O. Chemistry of Materials, 8, 691–700.CrossRefGoogle Scholar
Jansen, M. and Brachtel, G. (1980) Zur Kenntnis von Cr2H2(As2O7)(As4O12). Monatshefte für Chemie, 111, 377–384.CrossRefGoogle Scholar
Kato, K. (1975) Frequency conversion of neodymium: YAG laser radiation in RDA [rubidium dihydrogen arsenate]. Optics Communications, 13, 93–95.CrossRefGoogle Scholar
Kolitsch, U. (2004) Crystal structure of ammonium scandium diarsenate(V), (NH4)ScAs2O7, the second KAlP2O7-type diarsenate. Zeitschrift für Kristallographie – New Crystal Structures, 219, 207–208.CrossRefGoogle Scholar
Kolitsch, U. and Schwendtner, K. (2005) The octahedral- tetrahedral f ramework structures of InAsO4-H2O and PbIn(AsO4)(AsO3OH). Acta Crystallographica, C61, i86–i98.Google Scholar
Lin, K.J. and Lii, K.H. (1996) Synthesis and crystal structure of a novel galloarsenate containing the As3O10 5– triarsenate: Cs2Ga3As5Oi8 . Chemical Communications, 1137–1138.Google Scholar
Masquelier, C., D’Yvoire, F. and Collin, G. (1994) Relationships between crystal structure and sodium ion conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 Pp. 167–172 in: Solid State Ionic Materials, Proceedings of the 4th Asian Conference onSolid State Ionics (Chowdari, B.V.R., Yahaya, M., Talib, I.A. and Salleh, M.M., editors). Kuala Lumpur.Google Scholar
Masquelier, C., D’Yvoire, F. and Collin, G. (1995) Crystal-structure of Na7Fe4(AsO4)6 and ot-Na3Al2(AsO4)3, two sodium-ion conductors structurally related to II-Na3Fe2(AsO4)3 . Journal of Solid State Chemistry, 118, 33–42.CrossRefGoogle Scholar
Mesa, J.L., Goni, A., Brandl, A.L., Moreno, N.O., Barberis, G.E. and Rojo, T. (2000) Structure and magnetic properties of Li3Fe2(AsO4)3–x(PO4)x [x = 0, 1, 1.5, 2]: two sublattice weak ferromagnets. Journal of Materials Chemistry, 10, 2779–2785.CrossRefGoogle Scholar
Otwinowski, Z., Borek, D., Majewski, W. and Minor, W. (2003) Multiparameter scaling of diffraction intensities. Acta Crystallographica, A59, 228–234.Google Scholar
Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M.F. and Driss, A. (2007) Synthesis, crystalstructure and mono-dimensional thallium ion conduction of TlFe0.22Al0.78As2O7 . Journal of Solid State Chemistry, 180, 1224–1229.CrossRefGoogle Scholar
Qureshi, M., Rathore, H.S. and Kumar, R. (1970) Synthesis and ion-exchange properties of stannic arsenates: separation of Fe3+ from Ni2+, Mn2+, Ca2+, and Al3+; separation of Al3+ from Mg2+ and In3+.. Journal of the Chemical Society [Section] A, 1986–1990.CrossRefGoogle Scholar
Roberts, A.C., Burns, P.C., Gault, R.A., Criddle, A.J. and Feinglos, M.N. (2004) Petewilliamsite, (Ni,Co)30(As2O7)15, a new mineralfro m Johanngeorgenstadt, Saxony, Germany: description and crystalstructure. Mineralogical Magazine, 68, 231–240.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567–570.CrossRefGoogle Scholar
Roel fosen-Ahl., JN. and Peterson, R.C. (1989) Gittinsite: A modification of the thortveitite structure. The Canadian Mineralogist, 27, 703–708.Google Scholar
Sarp, H. and Ĉerný, R. (2001) Theoparacelsite, Cu3(OH)2As2O7, a new mineral: its description and crystalstructure. Archives des Sciences de Genève, 54, 7–14.Google Scholar
Schwendtner, K. (2006) TlInAs2O7, RbInAs2O7, and (NH4)InAs2O7: synthesis and crystalstructure of three isotypic diarsenates – representatives of a novelmicroporous structure type. Journal of Alloys and Compounds, 421, 57–63.CrossRefGoogle Scholar
Schwendtner, K. and Kolitsch, U. (2004a) Alkalis candium arsenates. II. The framework structures of α- and β-CsSc(HAsO4)2 . Acta Crystallographica, C60, i84–i88.Google Scholar
Schwendtner, K. and Kolitsch, U. (2004b) Alkali scandium arsenates. I. The framework structures of KSc(HAsO4)2 and RbScAs2O7 . Act a Crystallographica, C60, i79–i83.Google Scholar
Schwendtner, K. and Kolitsch, U. (2005) CsGa(H1.5AsO4)2(H2AsO4) and isotypic CsCr(H1.5AsO4)2(H2AsO4): decorated kröhnkite-like chains in two unusualhydrogen arsenates. Acta Crystallographica, C61, i90–i93.Google Scholar
Schwendtner, K. and Kolitsch, U. (2007a) Two new structure types: KFe3(AsO4)2(HAsO4)2 and K(H2O)M3+(H1.5AsO4)2(H2AsO4) (M3+ = Fe, Ga, In) – synthesis, crystalstructure and spectroscopy. European Journal of Mineralogy, 19, 399–409.CrossRefGoogle Scholar
Schwendtner, K. and Kolitsch, U. (2007b) Octahedrally coordinated As in M1+-arsenates – architecture and seven new members. Acta Crystallographica, B63, 205–215.Google Scholar
Schwendtner, K. and Kolitsch, U. (2007c) CsAl(H2AsO4)2(HAsO4) – a new monoclinic protonated arsenate with decorated kröhnkite-like chains. Acta Crystallographica, C63, i17–120.Google Scholar
Schwendtner, K., Kolitsch, U. and Tillmanns, E. (2006) Al(H2AsO4)(H2As2O7) – a novelstrongl y acidic structure type and the first structuralcharacterization of a diprotonated diarsenate group. 19th General Meeting of the International Mineralogical Association, p. 90387, Kobe, Japan.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar
Sheldrick, G.M. (1997a) SHELXS-97, a program for the solutionof crystal structures. University of Göttingen, Göttingen, Germany.Google Scholar
Sheldrick, G.M. (1997b) SHELXL-97, a program for crystal structure refinement. University of Göttingen, Göttiongen, Germany.Google Scholar
Spek, A.L. (2006) PLATON – a multipurpose crystallographic tool. Utrecht University, Utrecht, The Netherlands.Google Scholar
Wang, S.L., Wu, C.H. and Liu, S.N. (1994) Synthesis and structuralchara cterization of lithium iron diarsenate, LiFeAs2O7 . Journal of Solid State Chemistry, 113, 37–40.CrossRefGoogle Scholar
Wenger, M. and Armbruster, T. (1991) Crystal chemistry of lithium: oxygen coordination and bonding. European Journal of Mineralogy, 3, 387–399.CrossRefGoogle Scholar
Winand, J.M. and Tarte, P. (1988) New alkali-metal scandium arsenates MI 3Sc2(AsO4)3 (MI = K or Rb): synthesis and study by X-ray diffraction, vibrational spectroscopy and ionic conductivity. Comptes Rendus de l’Académie des Sciences, Série II, 307, 1857–1862.Google Scholar
Wood, R.M. and Palenik, G.J. (1999) Bond valence sums in coordination chemistry. Sodium-oxygen complexes. Inorganic Chemistry, 38, 3926–3930.Google Scholar
Supplementary material: File

Schwendtner and Kolitsch supplementary material

Table 7a

Download Schwendtner and Kolitsch supplementary material(File)
File 22.6 KB
Supplementary material: File

Schwendtner and Kolitsch supplementary material

Table 7b

Download Schwendtner and Kolitsch supplementary material(File)
File 24.1 KB
Supplementary material: File

Schwendtner and Kolitsch supplementary material

Table 7c

Download Schwendtner and Kolitsch supplementary material(File)
File 21.8 KB
Supplementary material: File

Schwendtner and Kolitsch supplementary material

Table 7d

Download Schwendtner and Kolitsch supplementary material(File)
File 22 KB