Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-20T02:19:32.383Z Has data issue: false hasContentIssue false

The Mayo Belwa meteorite: a new enstatite achondrite fall

Published online by Cambridge University Press:  05 July 2018

A. L. Graham
Affiliation:
Department of Mineralogy, British Museum (Natural History), London SW7 5BD
A. J. Easton
Affiliation:
Department of Mineralogy, British Museum (Natural History), London SW7 5BD
R. Hutchison
Affiliation:
Department of Mineralogy, British Museum (Natural History), London SW7 5BD

Summary

Mayo Belwa, a highly shocked enstatite achondrite, fell during the evening of 3 August 1974 in the Adamawa District, NE. Nigeria (8° 58' N., 12° 05' E.). The stone weighed 4·85 kg and was deposited in the Geological Survey of Nigeria and loaned for study to the British Museum (Natural History). It is composed principally of enstatite (0·02 FeO%), with some olivine (Fo100), diopside, feldspar (An9 Ab88 Or3), and minor Fe-Ni metal and the sulphides oldhamite, daubréelite, ferroan alabandine, and troilite. The kamacite contains between 0·15% and 1·2% Si and the troilite contains 1·1% Ti. The meteorite possesses vuggy cavities, which contain fluor-amphibole needles projecting from their walls, suggesting the presence at some time of a volatile-rich phase. The titanium-rich troilite, the nearly ironfree enstatite and the Mg/Si ratio are typical of the E-achondrites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bevan, (A. W. R.), Bevan, (J. C), and Francis, (J. G.), 1977. Amphibole in the Mayo Belwa meteorite. Mineral. Mag. 41, 531.CrossRefGoogle Scholar
D'yakonova, (M. I.) and Kharitonova (V. Ya.), 1960. Meteoritika, 18, 48.Google Scholar
Hey, (M. H.) and Easton, (A. J.), 1967. Geochim. Cosmochim. Acta, 31, 1789.CrossRefGoogle Scholar
Keil, (K.), 1968. J. Geophys. Res. 73, 6945.CrossRefGoogle Scholar
Keil, (K.), 1969. Earth planet. Set Lett. 7, 243.CrossRefGoogle Scholar
Lonsdale, (J. T.), 1947. Am. Mineral. 32, 354.Google Scholar
Mason, (P. K.), Frost, (M. T.), and Reed, (S. J. B.), 1969. National Physical Lab. I.M.S. Report 1.Google Scholar
Merrill, (G. P.), 1916. Mem. Nat. Acad. Sci., Washington, 14, Mem. 1, 12.Google Scholar
Moss, (A. A.), Hey, (M. H.), Elliott, (C. J.), and Easton, (A. J.), 1967. Mineral. Mag. 36, 101.Google Scholar
Reid, (A. M.) and Cohen, (A. J.), 1967. Geochim. Cosmochitn. Acta, 31, 661.CrossRefGoogle Scholar
Schmitt, (R. A.), Goles, (G. G.), Smith, (R. H.), and Osborn, (T. W.), 1972. Meteoritics, 7, 131.CrossRefGoogle Scholar
Stonier, (D.), Schulien, (S.), and Ostertag, (R.), 1975. Proc. 6th Lunar Sci. Conf., Geochim. Cosmochim. Acta Suppl. 6, 673.Google Scholar
Von Michaelis, (H.), Ahrens, (L. H.), and Willis, (J. P.), 1969. Earth planet. Sci. Lett. 5, 387.CrossRefGoogle Scholar
Wasson, (J T.), 1974. Meteorites. Springer-Verlag, New York, Heidelberg, Berlin.CrossRefGoogle Scholar
Wasson, (J T.), and Wai, (C. M.), 1970. Geochim. Cosmochim. Acta, 34, 169.CrossRefGoogle Scholar
Wiik, (H. B.), 19S6. Ibid. 9, 279.CrossRefGoogle Scholar