Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-12T22:13:10.419Z Has data issue: false hasContentIssue false

Orientation and geometry of the thomsonite unit cell: a re-study

Published online by Cambridge University Press:  05 July 2018

Rab Nawaz
Affiliation:
Department of Geology, Ulster Museum
John F. Malone
Affiliation:
Department of Chemistry, Queen's University, Belfast

Abstract

New X-ray and optical studies show that thomsonite has a < b < c and its optical orientation is α = b, β = c, and γ = a. The refined cell dimensions of Old Kilpatrick thomsonite are a = 13.051, b = 13.092, and c = 13.263 Å. The systematic absences h+l odd for h0l, h + k odd for odd for hk0, and l odd for 0kl uniquely determine the space group as Pcnn for which the arrangement of the alumino-silicate framework is suggested. The exceptions to the above absences are the 704 reflection (due to Renninger effect) and many weak hk0 reflections which suggest that the space group might be Pcnm or Pcn2. The observed habit, cleavage, and parallel growth are discussed in the light of the proposed framework structure.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, A., and Gottardi, G. (1975). Possible structures in fibrous zeolites. Neues Jahrb. Mineral., Monatsh. 396-414.Google Scholar
Amirov, S. T., Asratkulu, M. A., Mamedov, Kh. S., and Belov, N. V. (t972). Crystal structure of the zeolite gonnardite. Soviet Physics-Dokl. 17, 316-17.Google Scholar
Brewster, D. (1821). Account of comptonite, a new mineral from Vesuvius. Edinburgh. Phil. J. 4, 131-3.Google Scholar
Brögger, W. C. (1878). Uber ein neues Vorkommen yon thomsonit (Von Lhven). Z. Krystallogr. Mineral. 2, 289-90.Google Scholar
Brögger, W. C. (1889). Ibid. 16, 641-2.Google Scholar
Dana, E. S. (1892). The system of mineralogy, 6th edn. Paul, Kegan, London.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J. (1963). Rockforming minerals, vol. 4, Framework silicates. Longmans, London.Google Scholar
Des Cloizeaux, A. (1862). Man. de. Mineral., vol. 1, Paris.Google Scholar
Galli, E. (1976). Crystal structure refinement of edingtonite. Acta Crystallogr. B32, 1623-7.CrossRefGoogle Scholar
Gottardi, G. 1978. Mineralogy and crystal chemistry of zeolites. In Natural Zeolites-occurrence, properties and use. Sand, and Mumpton, eds. Pergamon Press, Oxford and New York.Google Scholar
Gregg, R. P., and Lettsom, W. G. (1858). Manual of the mineralogy of Great Britain and Ireland. Van Voorst, London.Google Scholar
Hahn, A. (1891). Thomsonit von Mettweiler bei St. Wendel. Z. Krystallogr. 19, 171-3.Google Scholar
Heddle, M. F. (1901). The mineralogy of Scotland, Goodchild edit. Douglas, David, Edinburgh.Google Scholar
Hey, M. H., and Bannister, F. A. (1932). Studies on the zeolites. Part II. Thomsonite (including fareolite) and gonnardite. Mineral. Mag. 23, 51-125.Google Scholar
Martin, A. J. P. (1931). On a new method of detecting pyro-electricity. Mineral. Mag. 22, 519-23.Google Scholar
Taylor, W. H., Meek, C. A., and Jackson, W. W. (1933). The structure of the fibrous zeolites. Z. Kristallogr. 24, 373-98.Google Scholar
Wyart, J. (1931). Sur les reseaux cristallins di la thomsonite et dela meso-type. CR Acad. Sci. Paris, 193, 666-8.[M.A. 5 84].Google Scholar