Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-07T03:27:00.549Z Has data issue: false hasContentIssue false

Pyribole structure types

Published online by Cambridge University Press:  05 July 2018

J. E. Chisholm*
Affiliation:
Mineralogy Department, British Museum (Natural History), Cromwell Road, London, SW7 5BD

Abstract

A set of pyribole structures can be derived from a model I-beam containing two distinct silicate chains in which the tetrahedra are rotated by different amounts. The model allows some tetrahedral distortion and is not bound by the parity rule (Thompson, 1970). A subset of pyribole structures which includes all the commonly occurring types can be defined using a new rule: that the structure may contain two types of tetrahedral layer, but no tetrahedral layer may contain two types of tetrahedral chain. This rule is more fundamental than the parity rule and has its origin in the optimization of the edge-to-edge packing of the tetrahedral chains into layers. Pnm21 (amphibole) and Pbc21 (pyroxene) emerge as space groups for ‘low protopyriboles’. The approach used here leads naturally to the − and × -chains notation of Thompson used by Veblen and Burnham (1978).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Graham, J. (1975). Some notes on α-spodumene. Am. Mineral. 60, 919-23.[MA 76-1919].Google Scholar
Harlow, G. E., Nehru, C. E., Prinz, M., Taylor, C. J., and Keil, K. (1979). Pyroxenes in Serra de Mag6: cooling history in comparison with Moama and Moore County. Earth Planet. Sci. Lett. 43, 173-81.Google Scholar
Irusteta, M. C., and Whittaker, E. J. W. (1975). A threedimensional refinement of the structure of holmquistite. Acta Crystallogr. I331, 145-50 [MA 76-201].Google Scholar
Law, A. D., and Whittaker, E. J. W. (1980). Rotated and extended model structures in amphiboles and pyroxenes. Mineral. Mag. 43, 565-74.[MA 80-1289].Google Scholar
Lindemann, W. (1961). Gitterkonstanten, Raumgruppe und Parameter des γ-MgSiO3. Naturwiss. 48, 428-9.Google Scholar
Lindemann, W. and Wögerbauer, R. (1974). Gitterkonstanten und Raumgruppe föt Protoenstatit (MgSiO3). Ibid. 61, 500.Google Scholar
Longhi, J., and Boudreau, A. E. (1980). The orthoenstatite liquidus field in the system forsterite-diopside-silica at one atmosphere. Am. Mineral. 65, 563-73.Google Scholar
Matsumoto, T., Tokonami, M., and Morimoto, N. (1975). The crystal structure of omphacite. Ibid. 60, 634-41.[MA 76-198].Google Scholar
Pannhorst, W. (1979). Structural relationships between pyroxenes. Neues Jahrb. Mineral. Abh. 135, 1-17.[MA 79-3367].Google Scholar
Papike, J. J., Prewitt, C. T., Sueno, S., and Cameron, M. (1973). Pyroxenes: comparisons of real and ideal structural topologies. Z. Kristallogr. 138, 254-73.[MA 74-902].Google Scholar
Papike, J. J. and Ross, M. (1970). Gedrites: crystal structures and intracrystalline cation distributions. Am. Mineral. 55, 1945-72.[MA 71-1754].Google Scholar
Sadanaga, R., Okamura, F. P., and Takeda, H. (1969). X-ray study of the phase transformations of enstatite. Mineral. J. 6, 110-30.[MA 72-1806].Google Scholar
Smith, J. V. (1969). Crystal structure and stability of the MgSiO3 polymorphs: physical properties and phase relations of Mg, Fe pyroxenes. Mineral. Soc. Am. Spec. Pap. 2, 3-29.[MA 70-2098].Google Scholar
Smyth, J. R. (1971). Protoenstatite: a crystal-structure refinement at 1100°C. Z. Kristallogr. 134, 262-74.[MA 72-2753].Google Scholar
Smyth, J. R. (1973). An orthopyroxene structure up to 850°C. Am. Mineral. 58, 636-48.[MA 74-154].Google Scholar
Smyth, J. R. (1974). Low orthopyroxene from a lunar deep crustal rock: a new pyroxene polymorph of space group P21 ca. Geophys. Res. Lett. 1, 27-9.[MA 75-2343].Google Scholar
Smyth, J. R. and Ito, J. (1977). The synthesis and crystal structure of a magnesium-lithium-scandium protopyroxcne. Am. Mineral. 62, 1252-7.[MA 78-2704].Google Scholar
Sueno, S., Cameron, M., and Prewitt, C. T. (1976). Orthoferrosilite: high-temperature crystal chemistry. Ibid. 61, 38-53.Google Scholar
Thompson, J. B. (1970). Geometrical possibilities for amphibole structures: model biopyriboles (abstract). Ibid. 55, 292-3.Google Scholar
Thompson, J. B. (1978). Biopyriboles and polysomatic series. Ibid. 63, 239-49.[MA 78-4032].Google Scholar
Veblen, D. R., and Burnham, C. W. (1978). New biopyriboles from Chester, Vermont: II. The crystal chemistry of jimthompsonite, clinojimthompsonite, and chesterite, and the amphibole-mica reaction. Ibid. 1053-73 [MA 79-2107].Google Scholar
Whittaker, E. J. W. (1960a). The crystal chemistry of the amphiboles. Acta Crystallogr. 13, 291-8.[MA 15-96].Google Scholar
Whittaker, E. J. W. (1960b). Relationships between the crystal chemistry of pyroxenes and amphiboles. Ibid. 13, 741-2.[MA 15 96].Google Scholar
Whittaker, E. J. W. (1969). The structure of the orthorhombic amphibole holmquistite. Ibid. 1325, 394-7 [MA 71-1756].CrossRefGoogle Scholar