Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-26T01:16:05.340Z Has data issue: false hasContentIssue false

Rare earth element-bearing tausonite and potassium barium titanates from the Little Murun potassic alkaline complex, Yakutia, Russia

Published online by Cambridge University Press:  05 July 2018

Roger H. Mitchell
Affiliation:
Department of Geology, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E1
Nikolai V. Vladykin
Affiliation:
Institute of Geochemistry, Academy of Sciences, P.O. Box 4019, Irkutsk-33, Russia 664033

Abstract

Tausonites occurring in aegirine potassium feldspar syenite from the Little Murun potassic alkaline complex are characterised by complex growth and resorption features. These are attributed to nonequilibrium crystallisation in a dynamic environment characterised by magma mixing and/or volatile degassing. The crystals represent a transported assemblage which has no simple relationship to the magma from which their host rock crystallised. Tausonites exhibit significant normal, reverse and oscillatory compositional zoning with respect to strontium and the rare earth elements. The compositions are unique, ranging from tausonite to strontian cerian loparite, and are unlike those found in strontian perovskites from lamproites and fenites associated with carbonatites.

Compositional data are presented for Ba-rich titanates belonging to the hollandite group, Ba(Ti,Fe)5O11 and K2Ti13O27. The titanates, on the basis of textural evidence, are interpreted to have formed by the reaction of K-Ba-rich residual liquids with pre-existing Ti-magnetite, ilmenite and tausonite. The compositions of the titanates are similar to those of primary titanates found in kimberlites and carbonatites.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. T. (1984) Probable relations between plagioclase zoning and magma dynamics, Fuego Volcano, Guatemala. Am. Mineral., 69, 660–76.Google Scholar
Bilibina, T. V., Daskova, A. D., Donakov, V. I., Titov, V. K., and Shchukin, S. N. (1967) Petrologiya shchelochnogo vulkanogenno-intrutruzivnogo kom-pleksa Aldanskogo shchita (Petrology of the Alkaline Volcanic Intrusive Complexes of the Aldan Shield). Nedra Press, Leningrad.Google Scholar
Bottinga, T., Kudo, A., and Weill, D. (1966) Some observations on oscillatory zoning and crystallization of magmatic plagioclase. Am. Mineral., 51, 792806.Google Scholar
Drake, M. J. and Weill, D. F. (1972) New rare earth element standards for electron microprobe analysis. Chem. Geol., 59, 323–30.Google Scholar
Haggerty, S. E. and Mafiano, A. N. (1983) Strontian loparite and strontio-chevkinite: Two new minerals in rheomorphic fenites from the Parana Basin carbonatites, South America. Contrib. Mineral. Petrol., 84, 365–81.Google Scholar
Lazebnik, K. A., Makhotko, V. F., and Lazebnik, Y. D. (1985) Pyervaya nakhodka praiderita v Vos-tochnoi Sibiri. (First occurence of priderite in Eastern Siberia). Mineral. Zhurn., 7, 813.Google Scholar
Mitchell, R. H. (1993a) Accessory rare earth, stron-tium, barium and zirconium minerals in the Benfon-tcin and Wesselton calcite kimberlites, South Africa. Proc. 5th Internat. Kimberlite Conf. (Meyer, H. O. A. and Leonardos, O. H., eds.). Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro, Brazil. in press.Google Scholar
Mitchell, R. H. (1993b) Suggestions for revisions to the terminology of kimberlites and lamprophyres from a genetic viewpoint. Ibid.Google Scholar
Mitchell, R. H. and Bergman (1991) Petrology of Lamproites. Plenum Press, New York.Google Scholar
Mitchell, R. H. and Meyer, H. O. A. (1989) Niobian K-Ba-V titanates from micaceous kimberlite, Star Mine, Orange Free State, South Africa. Mineral. Mag., 53, 451–6.Google Scholar
Mitchell, R. H. and Steele, I. (1992) Zirconium and potassium silicates and strontian cerian perovskite in lamproites from the Leucite Hills, Wyoming, Can. Mineral., 30, 1153–9.Google Scholar
Myrha, S., White, T. J., Kesson, S. E., and Riviere, J. C., (1988) X-ray photoelectron spectroscopy for the direct identification of Ti valance in [BaxCsy][(Ti, Al)2x+yTi8−2x−y]O16 hollandites. Am. Mineral., 73, 161–7.Google Scholar
Orlova, M. P. (1987) Novyye dannyye po geologii Malomurunskogo shchelochnogo massiva, yugo-zapadnaya Yakutiya. (Recent finding on the geology of the Little Murun alkaline massif, south western Yakutia). Sovyetskaya Geologiya 1987, 83-92. [Translated as lnternat. Geol. Review 1988, 30, 945–53..Google Scholar
Orlova, M. P. (1988) Petrokhimicheskiye osobennosti Malomurunskogo shchelochnogo massive, yugo-zapadnaya Yakutiya. (Petrochemistry of the Little Murun alkaline massif, south western Yakutia). Izvestiya Akad. Nauk. SSSR., Ser. Geol. 1988, 15—27. [Translated as Internat. Geol Review, 1988, 30, 954–69..Google Scholar
Ritter, J. J., Roth, R. S., and Blendell, J. E. (1986) Alkoxide precursor synthesis and characterization of phases in the barium-titanium oxide system. J. Am. Ceram. Soc., 69, 155–62.Google Scholar
Shadenkov, Y. M., Orlova, M. P. and Borisov, A. B. (1989) Piroksenity i shonkinity Malomurunskogo massivaintruzivnyye analogi lamproitov. (Pyroxe-nites and shonkinites of the Little Murun massif-intrusive analogues of lamproite). Zap. Vses. Mineral. Obshch., 118, 2837. [Translated as Inter-nat. Geol. Review 1990, 32, 61–91.Google Scholar
Smyslov, S. A. (1986) Kalsilitsoderzhashchiye porody Malomurunskogo massiva. (Kalsilite-bearing rocks of the Little Murun massif). Geologiya i Geofizika, 33-38.Google Scholar
Tillmans, E. (1969) The crystal structure of BaTi5O11. Acta Crystallogr. Sect. B, 25B, 1444-52.Google Scholar
Vladykin, N. V. (1985) Pyervaya nakhodka lamproitov v SSSR. (First occurrence of lamproite in the USSR.) Dokl. Akad. Nauk SSSR, 280, 718–22.Google Scholar
Vladykin, N. V. Matveyeva, L. H., Bogacheva, H. G., and Alekseyev, Y. A. (1983) Novyye danyye o charoite i charoitivykh porodakh. (Recent findings on charoite and charoitic rocks). In Mineralogiya i Genezis Tsvetnikh Kamnei Vostochnoi Sibiri (Mineralogy and Genesis of Gem Stones of Eastern Siberia), 41-56. Siberian Division Akad. Nauk. SSSR, Novosibirsk.Google Scholar
Vorobyev, E. I., Konyev, A. A., Malyshok, Y. V., Afonina, G. F. and Sapozhnikov, A. N. (1984) Tausonit SrTiO3, novyye mineraly v perovskit gryppa. (Tausonite SrTiO3, a new mineral of the perovskite group). Zap. Vses. Mineral. Obshch., 113, 839.Google Scholar
Vorobyev, E. I., Konyev, A. A., Malyshok, Y. V., Afonina, G. F. and Sapozhnikov, A. N. and Paradina, L. F. (1987) Tauso-nit, geologicheskiye usloviya abrazovaniya i mineral-nii paragenezisi. (Tausonite, geological conditions of formation and mineral paragenesis). Nauka Press. Novosibirsk.Google Scholar
Zhuravleva, L. N., Yukina, K. V., and Ryabeva, E. G. (1978) Praiderit, Pyervaya nakhodka v SSSR. (Pri-derite, first find in the USSR). Dokl. Akad. Nauk SSSR, 239, 435–8. (Translated as Dokl. Akad. Nauk SSSR 239, 141–3.)Google Scholar