Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-26T10:29:51.476Z Has data issue: false hasContentIssue false

Rhönite paragenesis in pyroxenite xenoliths, Mount Sidley volcano, Marie Byrd Land, West Antarctica

Published online by Cambridge University Press:  05 July 2018

R. H. Grapes*
Affiliation:
Institut für Mineralogie, Petrologie und Geochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
R. J. Wysoczanski
Affiliation:
Department of Mineral Sciences, National Museum of Natural History, MRC-0119, Smithsonian Institution, Washington, D.C., 20013-7012, USA
P. W. O. Hoskin
Affiliation:
Institut für Mineralogie, Petrologie und Geochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany

Abstract

Rhönite occurs in lower crustal pyroxenite xenoliths erupted in phonolite from the Mount Sidley composite volcano, Marie Byrd Land, Antarctica, as a localized breakdown product, with plagioclase, clinopyroxene, ± olivine ± Ti-magnetite + melt, of kaersutite, and as microphenocrysts (with olivine, plagioclase, clinopyroxene) in pockets of basanitic melt. Rhö nite after kaersutite has a more NaSi-rich/ CaAl-poor composition, lower Ti, and formed at higher oxidation (∼NNO) conditions than rhönite occurring as microphenocrysts in basanite. Comparison with experimentally determined rhönite stability in understaturated alkali basalt and as a reaction product after Ti-amphibole indicates that the Mount Sidley rhönite (and associated minerals) formed between 1090 and 1190°C at <0.5 kbar, presumably during temporary residence of the xenoliths in a shallow magma chamber below the volcanic edifice.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babkine, J.F., Conquere, J.C. and Duong, P.K. (1964 Sur un nouveau gisement de rhönite (Monistrol d’Al li er, Haut e Loir e). Compt es R endus Hebdomadaires des Séances de L’Académie Sciences, Paris, Series D, 258, 54795481.Google Scholar
Benson, W.N. (1939 Mineralogical notes from the University of Otago, NZ. No.3. Kaersutite and other brown amphiboles in the Cainozoic igneous rocks of the Dunedin District. Transactions of the Royal Society of New Zealand, 69, 283308.Google Scholar
Best, M.G. (1974 Mantle-derived amphibole within inclusions in alkali basaltic lavas. Journal of Geophysical Research, 79, 21072113.CrossRefGoogle Scholar
Boivin, P. (1980 Données expérimentales préliminaries sur la stabilité de la rhönite à 1 atmosphère. Application aux gisements naturels. Bulletin de Minéralogie, 103, 491502.CrossRefGoogle Scholar
Bonaccorsi, E., Merlino, S. and Pasero, M. (1990 Rhönite: structural and microstructural features, crystal chemistry and polysomatic relationships. European Journal of Mineralogy, 2, 203218.CrossRefGoogle Scholar
Brooks, C.K., Pederson, A.K. and Rex, D.C. (1979 The petrology and age of alkaline mafic lavas from the nunatak zone of central East Greenland. Gronlands Geologiske Undersogelse Bulletin , 133, 28 pp.Google Scholar
Cameron, K.L., Carman, M.F. and Butler, J.C. (1970 Rhönite from Big Bend National Park, Texas. American Mineralogist, 55, 864874.Google Scholar
Cawthorn, R.G. (1976 Some chemical controls on igneous amphibole compositions. Geochimica et Cosmochimica Acta, 40, 13191328.CrossRefGoogle Scholar
Ficke, B. (1961 Petrologische Untersuchungen an Tert iaren basa lt ischen bis phonol ithi schen Vulcaniten der Rhön. Tschermaks Mineralogische und Petrologische Mitteilungen, 7, 337436.Google Scholar
Gamble, J.A. and Kyle, P.R. (1987 The origin of glass and amphibole in spinel wehrlite xenoliths from Foster Crater, McMurdo Volcanic Group, Antarctica. Journal of Petrology, 28, 755780.CrossRefGoogle Scholar
Grünhagen, H. and Seck, H.A. (1972 Rhönit aus einem Melaphono lith vom Puy de Saint -Sando ux (Auverg ne). Tschermak s Mineralogische und Petrologische Mitteilungen, 18, 1738.CrossRefGoogle Scholar
Havette, par Andree, Clochiatti, R., Nativel, P. and Mantaggioni, L. (1982 Une paragenese inhabituelle a fassaite, melilite et rhönite dans un basalte alcalin contamine au contact d’un recif coralline (Saint-Leu, Ile de la Reunion). Bulletin de Minéralogie, 105, 364375.CrossRefGoogle Scholar
Johnston, A.D. and Stout, J.H. (1984 A highly oxidized ferrian salite-, kennedyite-, forsterite-, and rhönitebearing alkali gabbro from Kauai, Hawaii and its mantle xenoliths. American Mineralogis t, 69, 5768.Google Scholar
Johnston, A.D. and Stout, J.H. (1985 Compositional variations of naturally occurring rhoenite. American Mineralogist, 70, 12111216.Google Scholar
Kunzmann, T. (1989 Rhönit: mineralchemie, paragenese und stabilitä t in alkalibasaltischen vulcaniten (Ein beitrag zur mineralogenese der rhönit-änigmatt- mischkristallgruppe). Inaugurakdissertation zur Erlangung des Doktorgrades der Fakultä t fur geowissensc haften der Ludwig-Maximilians Universität, München, Germany.Google Scholar
Kunzmann, T. (1999 The aenigmatite – rhönite mineral group. European Journal of Mineralogy, 11, 743756.CrossRefGoogle Scholar
Kyle, P.R. and Price, R. (1975 Occurrences of rhönite in the McMurdo Volcanic Group, Antarctica and Ot ago Volc ano, New Zea land. American Mineralogist, 60, 722725.Google Scholar
Lacroix, M.A. (1909 Note sur la rhönite du Puy de Barneire a Sainy-Sandoux. Bulletin de la Société française de Mineralogie et de Cristallographie, 32, 325331.Google Scholar
Magonthier, M.C. and Velde, D. (1976 Mineralogy and petrology of some Tertiary leucite-rhönite basanites from central France. Mineralogical Magazine, 40, 817826.CrossRefGoogle Scholar
Mason, B. (1974 Aluminium-titanium-rich pyroxenes, with special reference to the Allende meteorite. American Mineralogist, 59, 11981202.Google Scholar
Oba, T., Yagi, K. and Hariya, Yu. (1986 Stability relation of kaersutite, reinvestigated on natural and synthetic samples. Pp. 353363 in: Morphology and Phase Equilibria of Minerals . Proceedings of the 13th General Meeting of the IMA, Varna, Russia, 1982.Google Scholar
Olsson, H.B. (1983 Rhönite from SkaÊ ne (Scania), southern Sweden. Geologiska Föreningen s i Stockholm Förhandlingar, 105, 281286.CrossRefGoogle Scholar
Panter, K.S., McIntosh, W.C. and Smellie, J.L. (1994 Volcanic history of Mount Sidley, a major alkaline volcano in Marie Byrd Land, Antarctica. Bulletin of Volcanology, 56, 361376.CrossRefGoogle Scholar
Panter, K.S., Kyle, P.R. and Smellie, J.L. (1997 Petrogenesis of a phonolite-trachyte succession at Mount Sidley, Marie Byrd Land, Antarctica. Journal of Petrology, 38, 12251253.CrossRefGoogle Scholar
Ramdohr, P. (1937 Erzmickroskische Untersuchungen an einigen seltenen oder bisher wenig beachteten Erzmineralien, Teil 2. Zentralblatt Mineralogie Abteilung , A, 289303.Google Scholar
Soellner, J. (1907 über Rhönit, ein neues äenigmatitähnliches mineral und über das Vorkommen und über die Verbreitung desselben in basaltischen Gesteinen. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie , Beilageband 24, 475547.Google Scholar
Tomita, T. (1934 On kaersutite from Dogo, Oki Islands, Japan, and its magmatic alteration and resorption. Journal of the Shanghai Science Institute, Section 2, 1, 99136.Google Scholar
Vinx, R. and Jung, D. (1977 Pargasite-kaersutitic amphibol e from a basanitic diatreme at the Rosenberg north of Kassel (North Germany). Contributions to Mineralogy and Petrology, 65, 135142.CrossRefGoogle Scholar
Wysoczanski, R.J. (1993 Lithospheric xenoliths from the Marie Byrd Land volcanic province, west Antarctica . PhD thesis, Victoria University of Wellington, New Zealand, 475 pp.Google Scholar
Wysoczanski, R.J., Gamble, J.A., Kyle, P.R. and Thirlwall, M.F. (1995 The petrology of lower crustal xenoliths from the Executive Committee Range, Marie Byrd Land Volcanic Province, West Antarctica. Lithos, 36, 185201.CrossRefGoogle Scholar
Yagi, K., Hariya, Y. and Onuma, K. (1975 Stability relation of kaersutite. Journal of the Faculty of Science, Hokkaido University, Series IV, 16, 331342.Google Scholar