Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-09T11:32:01.691Z Has data issue: false hasContentIssue false

Vittinkiite, MnMn4[Si5O15], a member of the rhodonite group with a long history: definition as a mineral species

Published online by Cambridge University Press:  25 September 2020

Nadezhda V. Shchipalkina*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, Moscow, 119071Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034St Petersburg, Russia
Natalia N. Koshlyakova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
*
*Author for correspondence: Nadezhda V. Shchipalkina, Email: estel58@yandex.ru

Abstract

The rhodonite-group mineral with the idealised, end-member formula MnMn4[Si5O15] and the crystal chemical formula VIIM(5)MnVIM(1–3)Mn3VIIM(4)Mn[Si5O15] (Roman numerals indicate coordination numbers) is defined as a valid mineral species named vittinkiite after the type locality Vittinki (Vittinge) mines, Isokyrö, Western and Inner Finland Region, Finland. Vittinkiite is an isostructural analogue of rhodonite, ideally CaMn4[Si5O15], with Mn2+ > Ca at the M(5) site. Besides Vittinki, vitiinkiite was found in more than a dozen rhodonite deposits worldwide, however, it is significantly less common in comparison with rhodonite. The mineral typically forms pink to light pink massive, granular aggregates and is associated with quartz, rhodonite, tephroite, pyroxmangite and Mn oxides. Vittinkiite is optically biaxial (+), with α = 1.725(4), β = 1.733(4), γ = 1.745(5) and 2Vmeas = 75(10)° (589 nm). The chemical composition of the holotype (wt.%, electron microprobe) is: MgO 0.52, CaO, 0.93, MnO 51.82, FeO 1.26, ZnO 0.11, SiO2 46.48, total 101.12. The empirical formula calculated based on 15 O apfu is Mn4.71Ca0.11Fe0.11Mg0.08Zn0.01Si4.99O15. Vittinkiite is triclinic, space group P$\bar{1}$, with a = 6.6980(3), b = 7.6203(3), c = 11.8473(5) Å, α = 105.663(3), β = 92.400(3), γ = 94.309(3)°, V = 579.38(7) Å3 and Z = 2. The crystal structure is solved on a single crystal to R1 = 3.85%. Polymorphism of MnSiO3 (rhodonite-, pyroxmangite-, garnet- and clinopyroxene-type manganese metasilicates) is discussed, as well as the relationship between vittinkiite and pyroxmangite, ideally Mn7[Si7O21], and the application of infrared spectroscopy for the identification of manganese pyroxenoids.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Oleg I Siidra

References

Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar
Aikawa, N. (1979) Oriented intergrowth of rhodonite and pyroxmangite and their transformation mechanism. Mineralogical Journal, 9, 255269.CrossRefGoogle Scholar
Aikawa, N. (1984) Lamellar structure of rhodonite and pyroxmangite intergrowths. American Mineralogist, 69, 270276.Google Scholar
Akimoto, S. and Syono, Y. (1972) High pressure transformations in MnSiO3. American Mineralogist, 57, 7684.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Brusnitsyn, A.I. (2000) Rhodonite Deposits of Middle Urals (Mineralogy and Genesis). St. Petersburg University, Russia [in Russian].Google Scholar
Brusnitsyn, A.I. (2013) Mineralogy of Manganese Metasedimentary Rocks of South Urals. St. Petersburg University, Russia, 153 pp. [in Russian].Google Scholar
Brusnitsyn, A.I. (2015) Parnokskoe Manganese Deposit, Polar Urals: Mineralogy, Geochemistry and Genesis of Ores. St. Petersburg University, Russia, 116 pp. [in Russian].Google Scholar
Brusnitsyn, A.I. and Zaitsev, A.N. (2000) Rhodonite as a new mineral. Urals Summer Mineralogical School – 2000. UGGGA, Ekaterinburg, Russia, pp. 38–41 [in Russian].Google Scholar
Burnham, C.W. (1971) The crystal structure of pyroxferroite from Mare Tranquillitatis Locality: Apollo 11 microgabbro sample 10047, Mare Tranquillitatis, Moon. Proceedings of the Second Lunar Science Conf. on Proceedings of the Second Lunar Science Conference, 1, 4757.Google Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species: Extended Library. Springer Verlag. Dordrecht, The Netherlands, 1726 pp.CrossRefGoogle Scholar
Dasgupta, S., Banerjee, H., Fukuoka, M. and Bhattacharya Roy, S. (1990) Petrogenesis of Metamorphosed manganese deposits and the nature of the precursor sediments. Ore Geology Reviews, 5, 359384.10.1016/0169-1368(90)90039-PCrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1978) Rock-Forming Minerals. V. 24, John Wiley and Sons Inc., New York.Google Scholar
Ford, W.E. and Bradley, W.M. (1913) Pyroxmangite, a new member of the pyroxene Group and its alteration product, skemmatite. American Journal of Science, 186, 169174.CrossRefGoogle Scholar
Fujino, K., Momoi, H., Sawamoto, H. and Kumazawa, M. (1986) Crystal structure and chemistry of MnSiO3 tetragonal garnet. American Mineralogist, 71, 781785.Google Scholar
Germar, H. (1819) Ueber die kohlenstoff – und kieselsauren Manganerze des Unterharzes. Journal für Chemie und Physik, 26, 108120.Google Scholar
Gnos, E., Armbruster, T. and Nyfeler, D. (1996) Kanoite, donpeacorite and tirodite: Mn-Mg-silicates from a manganiferous quartzite in the United Arab Emirates. European Journal of Mineralogy, 8, 251261.CrossRefGoogle Scholar
Henry, M. (1998) Retrosynthesis in inorganic crystal structures: application to nesosilicate and inosilicate networks. Coordination Chemistry Reviews, 178–180, 11091163.CrossRefGoogle Scholar
Hietanen, A (1938) On the petrology of Finnish quartzites. Bulletin de la Commission Géologique de Finlande, 122, 1119.Google Scholar
Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-Ray Crystallography. Vol. IV. The Kynoch Press, Birmingham, UK, 366 pp.Google Scholar
Ito, J. (1972) Rhodonite–pyroxmangite peritectic along the join MnSiO3-MgSiO3 in air. American Mineralogist, 57, 865876.Google Scholar
Jasche, C.F. (1817) Das Rothmanganerz in der Gegend von Elbingerode am Harz. Kleine Mineralogische Schriften, 1, 119.Google Scholar
Kobayashi, H. (1977) Kanoite, (Mn2+,Mg)2[Si2O6], a new clinopyroxene in the metamorphic rock from Tatchira, Oshima Peninsula, Hokkaido, Japan. Journal of Geological Society of Japan, 8, 537542.CrossRefGoogle Scholar
Koto, K., Morimoto, N. and Narita, H. (1976) Crystallographic relationships of the pyroxenes and pyroxenoids. Journal of Japanese Association of Mineralogy, Petrology and Economic Geology, 71, 248254.Google Scholar
Leverett, P., Williams, P.A. and Hibbs, D.E. (2008) Ca-Mg-Fe-rich rhodonite from the Morro da Mina mine, Conselheiro Lafaiete, Minas Gerais, Brasil. The Mineralogical Record, 44, 149184.Google Scholar
Liebau, F. (1962) Die Systematik der Silikate. Naturwissenschaften, 49, 481491.CrossRefGoogle Scholar
Liebau, F., Hilmer, W. and Lindemann, G. (1959) Über die Kristallstruktur des Rhodonit (Mn,Ca)SiO3. Acta Crystallographica, 12, 182187.10.1107/S0365110X59000548CrossRefGoogle Scholar
Maresch, W.V. and Mottana, A. (1976) The pyroxmangite-rhodonite transformation for the MnSiO3 composition. Contribution to Mineralogy and Petrology, 55, 6979.CrossRefGoogle Scholar
Momoi, H. (1964) Mineralogical study of rhodonites in Japan, with special reference to contact metamorphism. Memoirs of the Faculty of Science Kyushu University, Series D., 15, 3963.Google Scholar
Momoi, H. (1974) Hydrothermal crystallization of MnSiO3 polymorphs. Mineralogical Journal, 7, 359373.CrossRefGoogle Scholar
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S.J. (2019) Newsletter 49. New minerals and nomenclature modifications approved in 2019. IMA Commission on New Minerals, Nomenclature and Classification (CNMNC). Mineralogical Magazine, 83, 479483, p. 483.CrossRefGoogle Scholar
Morimoto, N., Koto, K. and Shinohara, T. (1966) Oriented transformation of johannsenite to bustamite. Mineralogical Journal, 5, 4464.CrossRefGoogle Scholar
Narita, H. (1973) Crystal Chemistry of Pyroxene and Pyroxenoid Polymorphs of MnSiO3. Doctoral Thesis, Osaka University, Osaka, Japan.Google Scholar
Narita, H., Koto, K. and Morimoto, N. (1977) The crystal structures of MnSiO3 polymorphs (rhodonite- and pyroxmangite-type). Mineralogical Journal of Sapporo, 8, 329342.CrossRefGoogle Scholar
Nelson, W.R. and Griffen, D.T. (2005) Crystal chemistry of Zn-rich rhodonite (“fowlerite”). American Mineralogist, 90, 969983.10.2138/am.2005.1694CrossRefGoogle Scholar
Nordenskiöld, A.E. (1863) Beskrifning öfver de i Finland funna mineralier. P. Th. Stolpes förlag, Helsingfors [Helsinki], (2nd edition), 177 pp. [in Swedish].Google Scholar
Ohashi, Y. and Finger, L.W. (1975) Pyroxenoids: a comparison of refined structures of rhodonite and pyroxmangite. Carnegie Institution of Washington Year Book, 74, 564569.Google Scholar
Peacor, D.R. and Niizeki, N. (1963) The redetermination and refinement of the crystal structure of rhodonite. (Mn.Ca)SiO3. Zeitschrift für Kristallographie, 119, 98116.CrossRefGoogle Scholar
Peacor, D.R., Essene, E.J., Brown, P.E. and Winter, G.A. (1978) The crystal chemistry and petrogenesis of a magnesian rhodonite. American Mineralogist, 63, 11371142.Google Scholar
Pertlik, F. and Zahiri, R. (1999) Rhodonite with a low calcium content: crystal structure determination and crystal chemical calculations. Monatshefte fur Chemie, 130, 257265.Google Scholar
Petersen, E.U., Anovitz, L.M. and Essene, E.J. (1984) Donpeacorite, (Mn,Mg)MgSi2O6, a new orthopyroxene and its proposed phase relations in the system MnSiO3–MgSiO3–FeSiO3. American Mineralogist, 69, 472480.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana2006. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic.Google Scholar
Pinckney, L.R. and Burnham, C.W. (1988) Effects of compositional variation on the crystal structures of pyroxmangite and rhodonite. American Mineralogist, 73, 798808.Google Scholar
Ross, C.S. and Kerr, P.F. (1932) The manganese minerals of a vein near Bald Knob, North Carolina. American Mineralogist, 17, 118.Google Scholar
Roy, S. (1981) Manganese Deposits. Academic Press, London.Google Scholar
Sapountzis, E.S. and Christofides, G. (1982) A calcium-poor rhodonite from Xanthi (N. Greece). Mineralogical Magazine, 46, 337340.CrossRefGoogle Scholar
Shchipalkina, N.V., Aksenov, S.M., Chukanov, N.V., Pekov, I.V., Rastsvetaeva, R.K., Schafer, C., Ternes, B. and Schuller, W. (2016) Pyroxenoids of pyroxmangite-pyroxferroite series from xenoliths of Bellerberg paleovolcano (Eifel, Germany): chemical variations and specific features of cation distribution. Crystallography Reports, 61, 931939.10.1134/S1063774516060146CrossRefGoogle Scholar
Shchipalkina, N.V., Chukanov, N.V., Pekov, I.V., Aksenov, S.M., McCammon, C., Belakovskiy, D.I., Britvin, S.N., Koshlykova, N.N., Schafer, C., Scholz, R. and Rastsvetaeva, R.K. (2017) Ferrorhodonite CaMn3Fe[Si5O15], a new mineral species from Broken Hill, New South Wales, Australia. Physics and Chemistry of Minerals, 44, 323334.CrossRefGoogle Scholar
Shchipalkina, N.V., Pekov, I.V., Chukanov, N.V., Zubkova, N.V., Belakovskiy, D.I., Britvin, S.N. and Koshlyakova, N.N. (2019a) Vittinkiite, IMA 2017-082a. CNMNC Newsletter No. 51; Mineralogical Magazine, 83, 757761.Google Scholar
Shchipalkina, N.V., Pekov, I.V., Chukanov, N.V., Biagioni, C. and Pasero, M. (2019b) Nomenclature of minerals of the rhodonite group. Mineralogical Magazine, 83, 829835.CrossRefGoogle Scholar
Sundius, N. (1931) On the triclinic manganiferous pyroxenes. American Mineralogist, 16, 411429, 488–518.Google Scholar
Takeuchi, Y. (1977) Designation of cation sites in pyroxenoids. Mineralogical Journal, 8, 431438.CrossRefGoogle Scholar
Tokohami, M., Horiuchi, H., Nakano, A., Akimoto, S.I. and Morimoto, N. (1979) The crystal structure of the pyroxene-type MnSiO3. Mineralogical Journal (Japan), 9, 424426.CrossRefGoogle Scholar
Supplementary material: File

Shchipalkina et al. supplementary material

Shchipalkina et al. supplementary material

Download Shchipalkina et al. supplementary material(File)
File 262.6 KB