Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-21T20:18:58.891Z Has data issue: false hasContentIssue false

Zoned Ca-amphibole as a new marker of the Alpine metamorphic evolution of phyllites from the Jubrique unit, Alpujárride Complex, Betic Cordillera, Spain

Published online by Cambridge University Press:  05 July 2018

M. D. Ruiz Cruz*
Affiliation:
Facultad de Ciencias, Campus de Teatinos, 29071 Málaga, Spain
*
*E-mail: mdruiz@uma.es

Abstract

Zoned Ca-amphibole from metaclastic rocks and synfolial quartz-rich veins of the Jubrique area (Alpujárride complex, Betic Cordillera, Spain), and their significance in the Alpine metamorphic evolution are described here for the first time. Typical Al-rich metapelites from this area show assemblages with white mica and chlorite, with sporadic kyanite and chloritoid. Nevertheless, some Ca-richer phyllites, fine-grained quartzites and quartz veins, show assemblages consisting of Ca-amphibole, plagioclase, epidote, titanite, chlorite and quartz. Ca-amphibole, appearing in large radial grains as well as in smaller subhedral crystals, displays a zonation with actinolite cores, overgrown by magnesiohomblende (and edenite) and minor tschermakite (and pargasite or hastingsite). The zoning suggests growth during prograde metamorphism. Retrogressive rims are variably developed in the several lithotypes. General zonation is well described in terms of the tschermakite, the edenite and the Fe3+Al-1, the MgFe2+-1, the NaK-1 and the OHCl-1 exchanges. Chemical parameters (IVAl, A(Na+K), BNa) indicate an evolution from low- to medium-grade temperature and pressure. The Al-in-amphibole thermobarometer provides a range of prograde temperatures between ∼300°C (for cores) and ∼600°C (for rims), for pressures from ∼1 to ∼6 kbar, respectively. Despite the uncertainty resulting from the fact that the thermobarometer used was calibrated for metabasites, amphibole defines a prograde pressure-temperature path typical of Barrovian-type metamorphism.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.L. and Smith, D.R. (1995) The effect of temperature and oxygen fugacity on Al-in-hornble-nde barometry. American Mineralogist, 80, 549–59.CrossRefGoogle Scholar
Bachman, O. and Dungan, M.A. (2002) Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. American Mineralogist, 87, 10621076.CrossRefGoogle Scholar
Bégin, NJ. and Carmichael, D.M. (1992) Textural and compositional relationships of Ca-amphiboles in metabasites of the Cape Smith Belt, Northern Quebec: Implications for a miscibility gap at medium pressure. Journal of Petrology, 33, 13171343.CrossRefGoogle Scholar
Beiersdorfer, R.E. and Day, H.W. (1995) Mineral parageneses of pumpellyite in low-grade mafic rocks. Geological Society of America, Special Paper, 296, 527.CrossRefGoogle Scholar
Bird, D.K., Cho, M., Janik, C., Liou, J.G. and Caruso, L.J. (1988) Compositional order/disorder, and stable isotope characteristics of Al-Fe epidote, State 2-14 drill hole, Salton Sea geothermal system. Journal of Geophysical Research, 93, 1313513144.CrossRefGoogle Scholar
Brown, E.H. (1977) The crossite content of Ca-amphiboles as a guide to pressure of metamorphism. Journal of Petrology, 18, 5372.CrossRefGoogle Scholar
Bucher, K. and Frey, M. (2002) Petrogenesis of Metamorphic Rocks. Springer, Berlin, 341 pp.CrossRefGoogle Scholar
Didon, I., Durand-Delga, M. and Kornprobst, J. (1973) Homologies géologiques entre les deux rives du Détroit de Gibraltar. Bulletin de la Societé géologique de France, 15, 77105.CrossRefGoogle Scholar
Egeler, C.G. and Simons, O.J. (1969) Sur la tectonique de la Zone Bétique (Cordilleres Bétiques, Espagne). Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, 25—3, 90 p.Google Scholar
Ernst, W.G. and Liu, J. (1998) Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB — A semiquantitative thermo-barometer. American Mineralogist, 83, 952969.CrossRefGoogle Scholar
Ferry, J.M. (1976) Metamorphism of calcareous sediments in the Waterville-Vassalboro area, south-central Maine: Mineral reactions and graphical analysis. American Journal of Science, 276, 841882.CrossRefGoogle Scholar
Gerya, T.V., Perchuk, L.L., Triboulet, C., Audren, C. and Sez'ko, A.I. (1997) Petrology of the Tumanshet Zonal Metamorphic Complex, Eastern Sayan. Petrology, 5/6, 503-533.Google Scholar
Grapes, R.H. and Graham, C.M. (1978) The actinolite-hornblende series in metabasites and the so-called miscibility gap: a review. Lithos, 11, 8597.CrossRefGoogle Scholar
Himmelberg, G. and Papike, J.J. (1969) Coexisting amphiboles from blueschist facies metamorphic rocks. Journal of Petrology, 10, 102114.CrossRefGoogle Scholar
Holland, T. and Blundy, J. (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116, 433–47.CrossRefGoogle Scholar
Klein, C. (1968) Coexisting amphiboles. Journal of Petrology, 9, 281330.CrossRefGoogle Scholar
Klein, C. (1969) 2-Amphibole assemblages in the system actinolite-hornblende-glaucophane. American Mineralogist, 54, 212237.Google Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277279.Google Scholar
Laird, J. and Albee, A.L. (1981) Pressure, temperature, and time indicators in mafic schist: their application to reconstructing the polymetamorphic history of Vermont. American Journal of Science, 281, 127175.CrossRefGoogle Scholar
Laird, J., Lanphere, M.A. and Albee, A.L. (1984) Distribution of Ordovician and Devonian metamorphism in mafic and pelitic schists from northern Vermont. American Journal of Science, 284, 376413.CrossRefGoogle Scholar
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, I.D., Hawthorne, F.C., Kato, F.C., Kisch, H.J., Krichovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Youzhi, G. (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist, 82, 10191037.Google Scholar
Loomis, T.P. (1972) Contact metamorphism of the pelitic rocks by the Ronda ultramafic intrusion, southern Spain. Geological Society of America Bulletin, 83, 22492474.CrossRefGoogle Scholar
Lucks, H., Schulz, B., Audren, C. and Triboulet, C. (2002) Variscan P-T evolution of garnet pyroxenites and amphibolites in the Baie d'Audierne metamorphic series, Southern Brittany (France). In: Martinez-Catalan, J. R., Hatcher, R. D., Arenas, R., & Diaz García, F. (Eds): Variscan Appalachian dynamics: the building of the Upper Palaeozoic basement. Geological Society of America Special Paper, 364, 89-103.Google Scholar
Massone, H.J. and Schreyer, W. (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contributions to Mineralogy and Petrology, 96, 212224.CrossRefGoogle Scholar
Mazdab, F.K. (2003) The diversity and occurrence of potassium-dominant amphiboles. The Canadian Mineralogist, 41, 13291344.CrossRefGoogle Scholar
Nishimura, Y., Coombs, D.S., Landis, C.A. and Itaya, T. (2000) Continuous metamorphic gradient documented by graphitization and K-Ar age, Southeast Otago, New Zealand. American Mineralogist, 85, 16251636.CrossRefGoogle Scholar
Oberti, R., Ungaretti, L., Cannillo, E. and Hawthorne, F.C. (1993) The mechanism of Cl incorporation in amphibole. American Mineralogist, 78, 746752.Google Scholar
Sanz, Olmo, del, A., Macía, Pablo, de, J.G., Aldaya Valverde, F., Campos Fernández, J., Chacon Montero, J., García Duefias, V., García Rossell, L., Sanz de Galdeano, C., Orozco Fernández, M. and Torres Roldán, R. (1987) Mapa Geológico de Espana, e:l:50.000, hoja 1064 (Cortes de la Frontera), I.G.M.E., Spain, 55 pp.Google Scholar
Puga, E., Diaz De Federico, A. and Nieto, J.M. (2002) Tectonostratigraphic subdivision and petrological characterisation of the deepest complexes of the Betic zone: a review. Geodinamica Ada, 15, 2343.CrossRefGoogle Scholar
Raase, P. (1974) Al and Ti contents in hornblende, indicators of pressure and temperature of regional metamorphism. Contributions to Mineralogy and Petrology, 45, 231236.CrossRefGoogle Scholar
Robinson, D. and Bevins, R.E. (1999) Patterns of regional low-grade metamorphism in metabasites. Pp. 143168: Low-grade Metamorphism (Frey, M. and Robinson, D., editors). Blackwell Science, Oxford, UK.Google Scholar
Robinson, P., Spear, F.S., Schumacher, J.C., Laird, J., Klein, C., Evans, B.W. and Doolan, B.L. (1982) Phase relations of metamorphic amphiboles: Natural occurrence and theory. Pp. 1—227 in: Amphiboles: Petrology and Phase Relations (Veblen, D.R. and Ribbe, P.H., editors). Reviews in Mineralogy, 9B. Mineralogical Society of America, Washington, D.C.Google Scholar
Ruiz Cruz, M.D., Sanz de Galdeano, C., Alvarez-Valero, A., Rodriguez Ruiz, M.D. and Novak, J. (2010) Pumpellyite and coexisting minerals in metapelites and veins from the Federico units (Internal Zone of the Rif). The Canadian Mineralogist, 48, 183203.CrossRefGoogle Scholar
Sanz de Galdeano, C, Andreo, B., García-Tortosa, F.J. and Lopez-Garrido, A.C. (2001) The Triassic palaeogeographic transition between the Alpujarride and Malaguide complexes, Betic-Rif Internal Zone. Palaeo, 167, 157173.CrossRefGoogle Scholar
Schulz, B., Triboulet, C. and Audren, C. (1995) Microstructures and mineral chemistry in amphibo-lites from the western Tauern Window (Eastern Alps), and P-r-deformation paths of the Alpine greenschist-amphibolite facies metamorphism. Mineralogical Magazine, 59, 641659.CrossRefGoogle Scholar
Schulz, B., Triboulet, C., Audren, C., Pfeifer, H.-R. and Gilg, A. (2001) Two-stage prograde and retrograde Variscan metamorphism of glaucophane-eclogites, blueschists and greenschists from He de Groix (Brittany, France). International Journal of Earth Sciences, 90, 871889.CrossRefGoogle Scholar
Schumacher, J.C. (1997) The estimation of the proportions of ferric iron in the eleetron-mieroprobe analysis of amphiboles. The Canadian Mineralogist, 35, 238246.Google Scholar
Schumacher, J.C. (2007) Metamorphic amphiboles: composition and coexistence. Pp. 359416 in: Amphiboles: Crystal Chemistry Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Delia Ventura, A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, Mineralogical Society of America, Chantilly, Virginia.CrossRefGoogle Scholar
Sharp, T.G. and Buseck, P.R. (1988) Prograde versus retrograde chlorite-amphibole intergrowths in a calc-silicate rock. American Mineralogist, 73, 12921301.Google Scholar
Smelik, E.A., Nyman, M.W. and Veblen, D.R. (1991) Pervasive exsolution within the calcic amphibole series: TEM evidence for a miscibility gap between actinolite and hornblende in natural samples. American Mineralogist, 76, 11841204.Google Scholar
Spear, F.S. (1980) NaSi-CaAl exchange equilibrium between plagioclase and amphibole: an empirical model. Contributions to Mineralogy and Petrology, 80, 140146.Google Scholar
Spear, F.S. (1996) Interpretation of plagioclase zonation in calcic pelitic schists, South Strafford, Vermont, and the effects on thermobarometry. The Canadian Mineralogist, 34, 133146.Google Scholar
Tagiri, M. (1977) Fe-Mg partition and miscibility gap between coexisting calcic amphiboles from the southern Abukuma Plateau, Japan. Contributions to Mineralogy and Petrology, 62, 271281.CrossRefGoogle Scholar
Torres-Roldan, R.L. (1981) Plurifacial metamorphic evolution of the Sierra Bermeja peridotite aureole (southern Spain). Estudios Geologicos, 37, 115133.Google Scholar
Triboulet, C. (1992) The (Na-Ca)amphibole-albite-chlorite-epidote-quartz geothermobarometer in the system S-A-F-M-C-N-H2O. 1. An empirical calibration. Journal of Metamorphic Geology, 10, 545556.CrossRefGoogle Scholar
Vanko, D.A. (1986) High-chlorine amphiboles from oceanic rocks: Product of highly saline hydrothermal fluids. American Mineralogist, 71, 5159.Google Scholar
Vidal, O., Goffé, B., Parra, T. and Bousquet, R. (1999) Calibration and testing of an empirical chloritoid-chlorite Mg-Fe thermometer and thermodynamic data for daphnite. Journal of Metamorphic Geology, 17, 2539.CrossRefGoogle Scholar
Vogl, J.J. (2003) Thermal-baric structure and P-T history of the Brooks Range metamorphic core, Alaska. Journal of Metamorphic Geology, 21, 269284.CrossRefGoogle Scholar
Volfmger, M., Robert, J.-L., Vielzeuf, D. and Neiva, A.M.R. (1985) Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles). Geochimica et Cosmochimica Ada, 49, 3748.CrossRefGoogle Scholar
Zenk, M. and Schulz, B. (2004) Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Mineralogical Magazine, 68, 769786.CrossRefGoogle Scholar
Zingg, A.J. (1993) Infra- and intercrystalline cation-exchange reactions in zoned calcic amphibole from the Bushveld Complex. The Canadian Mineralogist, 31, 649663.Google Scholar
Zingg, A.J. (1996) Immiscibility in Ca-amphiboles. Journal of Petrology, 37, 471496.CrossRefGoogle Scholar