Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-12T07:25:38.167Z Has data issue: false hasContentIssue false

Actual Fe-Li mica series as a series with ☐VI constant but not with AlIV or AlVI

Published online by Cambridge University Press:  05 July 2018

Sun Shihua*
Affiliation:
Research Centre for Mineral Resources Exploration, Chinese Academy of Sciences, P.O. Box 9701, A-11 Datun Road, Beijing 100101, China
Yu Jie
Affiliation:
Research Centre for Mineral Resources Exploration, Chinese Academy of Sciences, P.O. Box 9701, A-11 Datun Road, Beijing 100101, China

Abstract

To date, Fe-Li micas have been defined differently from other micas. The purpose of this paper is to reinterpret the actual Fe-Li mica series with new concepts of ‘essential replacement’ (the evolution direction) and ‘composition track’ (the sequence of mica varieties). Two hundred and fifty-eight analyses from the literature are used for this study in the form of eight data groups. The common compositional and substitutional characters of Fe-Li micas have been reinterpreted in light of principal component analysis and a geometric frame of ideal Fe2+-Al-Li micas in space with (Si, AlIV, AlVI, Fe2+, Li, ☐VI, K)-coordinates.

In our new interpretation, the actual Fe-Li micas are essentially neither AlIV- nor AlVI-, but ☐VI-constant. The actual Fe-Li micas are the weakest fluctuant relative to the Annite-Polylithionite-Trilithionite-Siderophyllite (APTE) plane. About 90% of variations of actual Fe-Li micas range from the trioctahedral trend described as a sequence along the segment K2Al2Fe5/22+Li☐1/2Si6Al2O20(OH,F)4+x[AlFe−22+Li3SiAl−2] (−1/3≤ x≤5/8). The substitution AlFe−22+Li3SiAl−2 (i.e. 2AlIV +4Fe2+ → 2Si +AlVI +3Li) is the main mechanism that keeps actual Fe-Li micas trioctahedral. More than 8% of variations arise from the dioctahedral trend involving created AlVI- and ☐VI-increasing replacement. The actual Fe-Li mica series comprises the composition trend from Fe2+-biotite to lepidolite. This series is not on the siderophyllite-polylithionite join, but can be expressed ideally as K2Al1+xFe4−4x2+Li1+3x(Si6+2xAl2−2x) O20(OH,F)4 (−1/3 ≤x≤1).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T.W. (1958) An Introduction to Multivariate Statistical Analysis. Wiley, New York.Google Scholar
Bailey, S.W. (1984) Crystal chemistry of the true micas. Pp. 1360 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington D.C. CrossRefGoogle Scholar
Foster, M.D. (1960) Interpretation of the composition of lithium micas. U.S. Geol. Surv. Prof. Paper, 354-E, 115–47.Google Scholar
Ginzburg, A.I. and Berkhin, S.I. (1953) On the composition and chemical constitution of the lithium micas. Mineralog. Muzeya. Akad. Nauk U.S.S.R. Trudy, 5, 90–133 (in Russian).Google Scholar
Guidotti, C.V., Cheney, J.T. and Conatore, P.D. (1975) Interrelationship between Mg/Fe ratio and octahedral Al content in biotite. Amer. Mineral., 60, 849–53.Google Scholar
Henderson, C.M.B., Martin, J.S. and Mason, R.A. (1989) Compositional relations in Li-micas from S.W. England and France: an ion- and electronmicroprobe study. Mineral. Mag., 53, 427–49.CrossRefGoogle Scholar
Jöreskog, K.G., Klovan, J.E. and Reyment, R.A. (1976) Geological Factor Analysis. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
Kovalenko, I.I. (1979) Experimental Study on Formation of Rare-Metal Lithium-Fluori ne Granites. Nauka, Moscow.Google Scholar
Lapides, I.L., Kovalenko, V.I. and Koval, P.V. (1977) The Micas of Rare-Metal Granitoids (In Russian). Nauka Sibirskoje Otd., Novosibirsk, Russia.Google Scholar
London, D. (1987) Internal differentiation of rareelement pegmatites: Effects of boron, phosphorus, and fluorine. Geochim. Cosmochim. Acta, 51, 403–20.CrossRefGoogle Scholar
Muñoz, J.L. (1968) Physical properties of synthetic lepidolite. Amer. Mineral., 53, 1490–521.Google Scholar
Muñoz, J.L. (1971) Hydrothermal stability relations of synthetic lepidolite. Amer. Mineral., 56, 2069–87.Google Scholar
Pesquera, A., Torres-Ruiz, J., Gil-Crespo, P.P. and Velilla, N. (1999) Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflore area (Cáceres, Spain). Amer. Mineral., 84, 5569.CrossRefGoogle Scholar
Rieder, M. (1970) Chemical composition and physical properties of lithium-iron micas from the Krušné hory Mts. (Erzgebirge), Part A: Chemical composition. Contrib. Mineral. Petrol., 27, 131–58.CrossRefGoogle Scholar
Rieder, M. (1971) Stability and physical properties of synthetic lithium-iron micas. Amer. Mineral., 58, 256–80.Google Scholar
Rieder, M., Cavazzini., G., D'Yakanow, Yu.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1999) Nomenclature of the micas. Mineral. Mag., 63, 267–79.CrossRefGoogle Scholar
Saxena, S.K. and Ekström, T.K. (1970) Statistical chemistry of calcic amphiboles, Contrib. Mineral. Petrol., 26, 276–84.CrossRefGoogle Scholar
Stone, M., Exley, C.S. and George, M.C. (1988) Compositions of trioctahedral micas in the Cornubian batholith. Mineral. Mag., 52, 175–92.CrossRefGoogle Scholar
Stone, M., Klomińský, J. and Rajpoot, G.S. (1997) Composition of trioctahedral micas in the Karlovy Vary pluton, Czech Republic and a comparison with those in the Cornubian batholith, S.W. England. Mineral. Mag., 61, 791807.CrossRefGoogle Scholar
Shihua, Sun(1984) The substitution of lithium micas and their significance in the study of granitoids. Pp. 373–93 in: Geology of Granites and their Metallogenetic Relations (Keqing, Xu and Guangchi, Tu, editors). Proc. Int. Symp., Nanjing, China, 1982.Google Scholar
Shihua, Sun (1988) Interpretation of chemical composition and subdivision of iron-lithium micas. Sci. Geol. Sinica, 3, 213–28 (in Chinese).Google Scholar
Shihua, Sun and Jie, Yu (1984) Fe-Al micas and aluminiun siderophyllites. Acta Mineral. Sinica, 3, 226–35 (in Chinese).Google Scholar
Shihua, Sun and Jie, Yu (1989) Natural subdivision of micas: A new approach to granitoid petrogenesis. International Geological Congress, Washington, D.C., pp. 283–98.Google Scholar
Shihua, Sun and Jie, Yu (1999) Fe-Li mica: a new approach to substitution series. Mineral. Mag., 63, 933–45.CrossRefGoogle Scholar
Tischendorf, G., Gottesmann, B., Förster, H. and Trumbull, R.B. (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineral. Mag., 61, 809–34.CrossRefGoogle Scholar
Tischendorf, G., Förster, H. and Gottesmann, B. (1999) The correlation between lithium and magnesium in trioctahedral micas: Improved equations for LiO2 estimation from MgO data. Mineral. Mag., 63, 5774.CrossRefGoogle Scholar