Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-27T16:44:26.270Z Has data issue: false hasContentIssue false

Bavsiite, Ba2V2O2[Si4O12], mineral data and crystal structure

Published online by Cambridge University Press:  12 September 2019

Hans-Peter Bojar*
Affiliation:
Universalmuseum Joanneum, Centre of Natural History, Weinzöttlstraße 16, A-8045Graz, Austria
Franz Walter
Affiliation:
Universalmuseum Joanneum, Centre of Natural History, Weinzöttlstraße 16, A-8045Graz, Austria
Judith Baumgartner
Affiliation:
Institute of Inorganic Chemistry, Technical University of Graz, Stremayrgasse 16/IV, A–8010Graz, Austria
*
*Author for correspondence: Hans-Peter Bojar, Email: hans-peter.bojar@museum-joanneum.at

Abstract

Bavsiite from the type locality Gun Claim, Yukon Territory, Canada, occurs as millimetre-sized sky-blue platy crystals in a barium-rich low-temperature skarn related to a porphyritic quartz monzonite stock. Associated minerals are alstonite, baryte, celsian, diopside, fresnoite, mica, suzukiite, walstromite, witherite and minerals of the cerchiaraite group. Bavsiite is optical uniaxial (+), with ω = 1.725(3) and ε = 1.750(3) (589 nm) and pleochroic. Electron microprobe analyses yielded the empirical formula Na0.02Ba1.98Ti0.16Fe2+0.03V4+1.80 Al0.05Si4.00O14 based on 14 oxygen atoms, the simplified chemical formula is Ba2V2Si4O14. Bavsiite is tetragonal, space group I4/m, a = 7.043(1), c = 11.444(2) Å and Z = 2 obtained from single crystal data at 100 K, which are in good agreement with cell parameters from powder diffraction data at 293 K: a = 7.051(1) Å and c = 11.470(1) Å. The eight strongest lines of the powder X-ray diffraction pattern are [d, Å (I,%)(hkl)]: 3.76(30)(112), 3.36(44)(013), 3.004(100)(022), 2.493(43)(220), 2.486(67)(114), 2.286(24)(222), 1.785(39)(116) and 1.763(25)(040). The crystal structure was refined to R = 0.0159 based upon 312 unique reflections with I > 2σ(I). The crystal structure of bavsiite comprises unbranched single [Si4O12]8– rings connected by [VO5]6– square pyramids and BaO12 polyhedra. It can also be considered as cage–like [Si4V2O18]12– clusters built by four SiO4 tetrahedra and two VO5 square pyramids. These clusters are cross–linked to form a pseudo-two-dimensional network (2D) parallel to (001) containing empty channels along the a axis and the 2D networks held together by Ba2+ ions located in channels parallel to the c axis. The structural formula is Ba2V2O2[Si4O12]. Bavsiite is polymorphic to suzukiite, BaVSi2O7, which is orthorhombic.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian T. Graham

References

Alfors, J.T. and Pabst, A. (1984) Titanian taramellites in western North America. American Mineralogist, 69, 358373.Google Scholar
Basso, R., Lucchetti, G., Palenzona, A. and Zefiro, L. (1995) Haradaite from the Gambatesa mine, eastern Liguria, Italy. Neues Jahrbuch für Mineralogie – Monatshefte, 6, 281288.Google Scholar
Berger, T. and Range, K.–J. (1996) Zwei Metasilicate mit Vierer-einfach-Ketten: Hochdrucksynthese und Strukturverfeinerung von Sr2(VO)2Si4O12 (Haradait) und Sr2(TiO)2Si4O12. Zeitschrift für Naturforschung, Teil B. Anorganische Chemie, Organische Chemie, 51, 10991103.Google Scholar
Bojar, H.-P. and Walter, F. (2014) Bavsiite, IMA 2014-019. CNMNC Newsletter No. 21, August 2014, page 800; Mineralogical Magazine, 78, 797804.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Bruker, (2008) Programs SMART, SAINT, SADABS, XPREP, and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Bruker-AXS (2009) TOPAS Software User Manual Version 4.2. Karlsruhe, Germany.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond–valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Ito, M., Matsubara, S., Yokoyama, K., Momma, K., Miyawaki, R., Nakai, I. and Kato, A. (2014) Crystal structure of suzukiite from the Mogurazawa mine, Gunma Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 109, 222227.CrossRefGoogle Scholar
Kampf, A.R., Peterson, R.C. and Joy, B.R. (2014) Itsiite, Ba2Ca(BSi2O7)2, a new mineral species from Yukon, Canada: description and crystal structure. The Canadian Mineralogist, 52, 401407.CrossRefGoogle Scholar
Liu, G. and Greedan, J.E. (1994) Crystal structure and magnetic properties of BaVSi2O7. Journal of Solid State Chemistry, 108, 267274.CrossRefGoogle Scholar
MacNeil, L.A., Peterson, R.C., Färber, G, Groat, L. and Witzke, T. (2013) Mineralogical studies of a low-temperature hydrothermal barium-rich skarn deposit, Gunn Claim, Yukon Territory. Winnipeg 2013: GAC–MAC Joint Annual Meeting. Abstract volume, 135, p. 135.Google Scholar
Montgomery, J.H., Thompson, R.M. and Meagher, E.P. (1972) Pellyite, a new barium silicate mineral from the Yukon Territory. The Canadian Mineralogist, 11, 444447.Google Scholar
Peterson, R.C., Färber, G., Evans, R.J., Groat, L., MacNeil, L., Joy, B., Lafuente, B. and Witzke, T. (2016) Meierite, a new barium mineral with a KFI-type zeolite framework from the Gun Claim, Yukon Canada. The Canadian Mineralogist, 54, 12491259.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘PAP’. Pp. 3175 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.CrossRefGoogle Scholar
Schindler, M., Hawthorne, F.C. and Baur, W.H. (2000) Crystal chemical aspects of vanadium: polyhedral geometries, characteristic bond valences, and polymerization of (VOn) Polyhedra. Chemistry of Materials, 12, 12481259.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, Germany, 870 pp.Google Scholar
Supplementary material: File

Bojar et al. supplementary material

Bojar et al. supplementary material

Download Bojar et al. supplementary material(File)
File 85.2 KB