Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-30T07:21:46.991Z Has data issue: false hasContentIssue false

Cr-rich Mg-chloritoid, a first record in high-pressure metagabbros from Monviso (Cottian Alps), Italy

Published online by Cambridge University Press:  05 July 2018

J. R. Kienast
Affiliation:
Laboratoire de Petrographie, Universite P. et M. Curie, 4 Place Jussieu, 75230 Paris, France
B. Messiga
Affiliation:
Istituto di Petrografia, Corso Europa, 26 1-16132 Genova, Italy

Abstract

Metamorphosed troctolite cumulates occur interbedded with Mg-rich metagabbros in the Monviso ophiolitic massif; they have developed chloritoid, omphacite, talc and garnet during the eclogitic stage of the Eo-alpine metamorphism. The lack of penetrative deformation in the rocks has made it possible to recognize different microstructural sites of chloritoid growth, in which the chloritoid composition may vary widely and is controlled by the specific inherited chemical domain.

The chloritoid compositions are unusually rich in Cr and Mg with large variations in Fe2+/Mg and Cr/AlVI ratio. The Cr/Al ratio in chloritoid is linked to both the Cr value of the primary minerals (i.e. Cr-rich spinels, Cr-end-members in the clinopyroxenes) and a limited redistribution of Cr during metamorphism. The Fe2+/Mg ratio, while being partly affected by bulk composition of the host rocks, also varies between different microstructural sites; the highest ratio is recorded in coronas between clinopyroxene and plagioclase, lower values occurring in coronas between plagioclase and olivine.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bearth, P. (1963) Schweiz. Mineral. Petr. Mitt. 43, 269-86.Google Scholar
Bearth, P. (1974) Ibid. 53, 299-334.Google Scholar
Brindley, G.V., and Harrison, F.W. (1952) Ada Crystallogr.. 5, 698-9.CrossRefGoogle Scholar
Caby, R., Kienast, J.R., and Saliot, P. (1978) Revue de Geogr. Phys. et Geol. Dynam. 20, 307-22.Google Scholar
Chinner, G.A., and Dixon, J.E. (1973) J. Petrol. 14, 158-202.CrossRefGoogle Scholar
Dal Piaz, G.V., and Ernst, W.G. (1978) Tectonophys. 51, 99-126.CrossRefGoogle Scholar
Fyfe, G.H., Manning, P.C. and Nikel, E.H. (1968) Am. Mineral. 53, 1174-201.Google Scholar
Hanscom, R.H. (1975) Ada Crystallogr. 31, 780-4.CrossRefGoogle Scholar
Kienast, J.R. (1982) Terra Cognita. 2, 307.Google Scholar
Lombardo, B., Nervo, R., Compagnoni, R., Messiga, B., Kienast, J.R., Mevel, C, Fiora, L., Piccardo, G.B., and Lanza, R. (1978) Rend. Soc. Ital. Mineral. Petrol. 34, 251-303.Google Scholar
Lombardo, B., Piccardo, G.B., and Campagnoni, R. (1980) In Ophiolites (Panayiotou, A., ed.) Geol. Surv. Dept., Cyprus. 332-40.Google Scholar
Messiga, B. (1986) Mem. Soc. Geol. Ital. 95.Google Scholar
Messiga, B., Piccardo, G.B., and Ernst, W.G. (1983) Contrib. Mineral. Petrol. 83, 1-15.CrossRefGoogle Scholar
Mevel, C, and Kienast, J.R. (1980) Mineral. Mag. 43, 979-84.CrossRefGoogle Scholar
Ribbe, P.H. (1980) In Orthosilicates (Ribbe, P.H., ed.) Reviews in Mineralogy. 5, 155-69.Google Scholar
Serri, G. (1980) In Ophiolites (Panayiotou, A., ed.) Geol. Surv. Dept., Cyprus. 296-313.Google Scholar