Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-24T03:00:58.377Z Has data issue: false hasContentIssue false

Crystal structure, thermal behaviour and parageneses of koninckite, FePO4·2.75H2O

Published online by Cambridge University Press:  02 January 2018

J. Plášil*
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Prague 8, 182 21, Czech Republic
J. Majzlan
Affiliation:
Institute of Geosciences, Burgweg 11, University of Jena, D-07749, Germany
M. Wierzbicka-Wieczorek
Affiliation:
Institute of Geosciences, Burgweg 11, University of Jena, D-07749, Germany
B. Kiefer
Affiliation:
Department of Physics, 1255 N Horseshoe, New Mexico State University, Las Cruces, New Mexico, 88003, USA
*
*E-mail: plasil@fzu.cz

Abstract

The crystal structure of the mineral koninckite was solved from synchrotron powder X-ray diffraction (XRD) data and refined using density-functional theory (DFT) calculations. Koninckite is tetragonal, with the space group P41212, a = 11.9800(5) Å, c = 14.618(1) Å, V = 2097.9(2) Å3, Z = 8. Its structure is a heteropolyhedral framework with zeolite-like tunnels along [001]. Owing to the severe peak overlap in the powder XRD data and the probable intergrowth of enantiomorphic domains in koninckite, the DFT calculations were applied to provide precise atomic positions (including hydrogen). Additionally, the DFT calculations suggest strongly that koninckite is an antiferromagnetic semiconductor, at least at low temperatures. The DFT computations were used to locate H2O molecules in the channels and to complete the structural description. Thermogravimetric analysis and powder XRD data at variable temperatures show that the structure of koninckite dehydrates and eventually collapses between 160–180°C. Negative thermal expansion was observed between 80 and 150°C. A list of the known occurrences of koninckite suggests that this mineral is not as rare as assumed previously; koninckite is often fine-grained, inconspicuous, and thereby easy to overlook. Koninckite is yet another natural example of an Fe-phosphate zeolitic material.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altgauzen, M.N. and Kuznecova, E.G. (1971) On the nature of the weathering process of pyrite-bearing aluminous shales. Litologiya i Poleznye Iskopayemiye, 41-48 [in Russian].Google Scholar
Bengtson, A., Morgan, D. and Becker, U. (2013) Spin state of iron in Fe3O4 magnetite and h-Fe3O4, Physical Review B, 79, DOI: 10.1103/PhysRevB.87.155141.CrossRefGoogle Scholar
Beus, A.A. (1950) Magnesiophillite and mangankoninck-ite-new minerals from the pegmatites of Turkestan ridge. Doklady Akademii Nauk SSSR, 73, 1267-1269 [in Russian].Google Scholar
BlaB, G. and Graf, H.-W. (1995) Mineralogische Neuigkeiten vom Hardtkopf bei Sundern-Linnepe, Sauerland. Mineralien-Welt, 6(4) 2627.Google Scholar
Blochl, P.E. (1994) Projector augmented-wave method. Physical Review B, 50, 1795317979.CrossRefGoogle ScholarPubMed
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry. Lucr Monongraphs in Crystallography 12. Oxford Science Publications, Oxford, UK.Google Scholar
Brown, I.D. and Shannon, R.D. (1973) Empirical bond-strength—bond-length curves for oxides. Ada Crystallographica, A29, 266282.Google Scholar
Cavellec, M., Riou, D., Ninclaus, C, Greneche, J.-M. and Ferey, G. (1996) [Fe4(PO4)4F2(H2O)3]-[C6H14N2] or ULM-12, the first magnetic ferric phosphate with an open structure: Hydrothermal synthesis, structure, and magnetic properties. Zeolites, 17, 250260.CrossRefGoogle Scholar
Cesaro, G. (1884) Sur la Koninckite, nouveau phosphate ferrique hydrate. Annales de la Societe geologique de Belgique, 11, 247257.Google Scholar
Dudarev, S.L., Botton, G.A., Savrasov, S.Y, Humphreys, C.J. and Sutton, A.R (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B, 57, 15051509.CrossRefGoogle Scholar
Eventoff, W., Martin, R. and Peacor, D.R. (1972) The crystal structure of heterosite. American Mineralogist, 57,45-51.Google Scholar
Fanfani, L. and Zanazzi, P.F. (1967) The crystal structure of beraunite. Ada Crystallographica, 22, 173181.CrossRefGoogle Scholar
Holzwarth, N.A.W., Matthews, G.E., Dunning, R.B., Tackett, A.R. and Zeng, Y. (1997) Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids. Physical Review B, 55, 20052017.CrossRefGoogle Scholar
Huminicki, D.M.C. and Hawthorne, F.C. (2002) The crystal chemistry of the phosphate minerals. Pp. 123-253 in: Phosphates (M.L. Kohn, J. Rakovan and, J.M. Hughes, editors). Reviews in Mineralogy and Geochemistry, 48. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Ivanyuk, G.Yu. and Yakovenchuk, YN. (1997) Minerals of the Kovdor Massif. RAS Kola Science Center Publishing, Apatity, Russia, 116 pp.Google Scholar
Jirasek, J. (2005) A find of koninckite near Litosice and its comparison with other world occurrences. Bulletin mineralogicko-petrografickeho oddeleni Ndrodniho muzea v Praze, 269, 132137 [in Czech].Google Scholar
Keates, A.C., Armstrong, J.A. and Weller, M.T (2013) Iron fluorophosphates. Dalton Transactions, 42, 1071510724.CrossRefGoogle ScholarPubMed
Kniep, R. and Mootz, D. (1973) Metavariscite-a redetermination of its crystal structure. Ada Crystallographica, B29, 22922294.Google Scholar
Kresse, G. and Furthmuller, J. (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 1550.CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J. (19966) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 1116911186.CrossRefGoogle Scholar
Kresse, G. and Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 17581775.CrossRefGoogle Scholar
Leonardos, O.H., Fernandes, S.M., Fyfe, W.S. and Powell, M. (1987) The micro-chemistry of uraniferous laterites from Brazil: A natural example of inorganic chroma-tography. Chemical Geology, 60, 111119.CrossRefGoogle Scholar
Leute, M.A. (1999) Mineralogische Neuigkeiten aus Osterreich. Mineralien-Welt, 10(5), 26-36.Google Scholar
Lii, K-H., Huang, Y.-F, Zima, V, Huang, C.-Y, Lin, H. M., Jiang, Y-C, Liao, F.-L. and Wang, S.-L. (1998) Syntheses and structures of organically templated iron phosphates. Chemistry of Materials, 10, 25992609.CrossRefGoogle Scholar
Majzlan, J. and Kiefer, B. (2006) An X-ray-and neutron-diffraction study of synthetic ferricopiapite, Fe14/3(SO4)6(OD,OH)2(D2O,H2O)20, and ab initio calculations on the structure of magnesiocopiapite, MgFe4(SO4)6(OH)2(H2O)20 . The Canadian Mineralogist, 44, 1227–237.CrossRefGoogle Scholar
Majzlan, J., Dordevic, T, Kolitsch, U. and Schefer, J. (2010) Hydrogen bonding in coquimbite, nominally Fe2(SO4)3-9H2O, and the relationship between coquimbite and paracoquimbite. Mineralogy and Petrology, 100, 241248.CrossRefGoogle Scholar
Maspoch, D., Ruiz-Molina, D. and Veciana, J. (2007) Old materials with new tricks: multifunctional open-framework materials. Chemical Society Reviews, 36, 770818.CrossRefGoogle ScholarPubMed
Mazin, I.I., Fei, YW., Downs, R. and Cohen, R. (1998) Possible polytypism in FeO at high pressures. American Mineralalogist, 83, 451457.CrossRefGoogle Scholar
Methfessel, M. and Paxton, A.T (1989) High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40, 36163621.CrossRefGoogle ScholarPubMed
Michel, F.M., Hosein, H-A., Hausner, D.B., Debnath, S., Parise, J.B. and Strongin, D.R. (2010) Reactivity of ferritin and the structure of ferritin-derived ferri-hydnte.BiochimicaetBiophysicaActa, 1800, 871885.Google Scholar
Moore, P.B. and Shen, J. (1983) An X-ray structural study of cacoxenite, a mineral phosphate. Nature, 306, 356358.CrossRefGoogle Scholar
Moore, P.B. and Kampf, A.R. (1992) Beraunite: refinement, comparative crystal chemistry, and selected bond valences. Zeitschriftfur Kristallographie, 201, 263281.Google Scholar
Novak, F, Paulis, P., Sevcu, J., Kopista, J. and Zeman, M. (2003) Koninckite, evansite, vashegyite, and vol-borthite from Kociha near Rimavska Sobota (Slovakia). Bulletin mineralogicko-petrografickeho oddeleni Ndrodniho muzea v Praze, 11, 159166 [in Czech].Google Scholar
Oszlanyi, G. and Siito, A. (2004) Ab initio structure solution by charge flipping. A eta Crystallographica A, 60, 134141.Google ScholarPubMed
Oszlanyi, G. and Siito, A. (2008) The charge flipping algorithm. Ada Crystallographica A, 64, 123134.Google ScholarPubMed
Palatinus, L. (2013) The charge flipping algorithm in crystallography. Ada Crystallographica B', 69, 116.Google Scholar
Palatinus, L. and Chapuis, G. (2007) Superflip-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451–156.CrossRefGoogle Scholar
Palatinus, L. and van der Lee, A. (2008) Symmetry determination following structure solution i. PI. Journal of Applied Crystallography, 41, 975984.CrossRefGoogle Scholar
Perdew, IP, Burke, K. and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 11, 38653868.CrossRefGoogle Scholar
Petficek, V, Dusek, M. and Palatinus, L. (2006) Jana2006. The crystallographic computing system. Institute of Physics, Praha, Czech Republic.Google Scholar
Petficek, V, Dusek, M. and Palatinus, L. (2014) Crystallographic Computing System Jana 2006: General features. Zeitschrift fur Kristallographie, 229, 345352.Google Scholar
Punkkinen, M.P.J., Kokko, K., Hergert, W. and Vayrynen, I. J. (1999) Fe2O3 within the LSDA+U approach. Journal of Physics-Condensed Matter, 11, 23412349.CrossRefGoogle Scholar
Puttner, M. (1997) Das seltene Phosphatmineral Koninckit in einer Mineralisation von Geo-Trial bei Oberbuchach, Karnische Alpen (Karnten). Aufschluss, 48, 317320.Google Scholar
Riba, J.R. (1997) El Turo de Montcada (Montcada i Reixac, Valles Occidental). Historia, Mineria i Mineralogia. Revista de Minerals Mineralogistes de Catalunya, 12, 3455 [in Catalan].Google Scholar
Robinson, K., Gibbs, G.Y and Ribbe, PH. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Rollmann, G., Rohrbach, A., Entel, P., Hafner, J. (2004) First-principles calculation of the structure and magnetic phases of hematite. Physical Review B, 69, 165-107.CrossRefGoogle Scholar
Sakurai, K., Matsubara, S. and Kato, A. (1987) Koninckite from Suwa Mine, Chino City, Nagano Prefecture, Japan. Bulletin of the National Science Museum, Series C (Geology & Paleontology), 13, 149156.Google Scholar
Schron, A., Rodl, C. and Bechstedt, F. (2012) Crystalline and magnetic anisotropy of the 3d-transition metal monooxides MnO, FeO, CoO, and NiO. Physical Review B, 86, 115134.Google Scholar
Senesi, F. (2000) Koninckite e altri fosfati della miniera del Pollone (Valdicastello Carducci, Lucca). Rivista Mineralogica Italiana, 1, 4648.Google Scholar
Shirley, R. (2000). The CRYSFIRE System for Automatic Powder Indexing: Users Manual. The Lattice Press, Guildford, Surrey, England.Google Scholar
Szakall, S. and Garter, I. (1993) Mineral Species of Hungary. Fair System Kft, Miskolc, Hungary [p. 64—65, in Hungarian].Google Scholar
van Tassel, R. (1968) Donnees cristallographiques sur la koninckite. Bulletin Societe Francais de Mineralogie et de Cristallographie, 91, 487489.CrossRefGoogle Scholar
Voegelin, A., Kaegi, R., Frommer, J., Vantelon, D. and Hug, S.J. (2010) Effect of P, Si, and Ca on Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water studied by X-ray absorption spec-troscopy. Geochimica et Cosmochimica Ada, 74, 164186.CrossRefGoogle Scholar
Vosko, S.H., Wilk, L. and Nusair, M. (1980) Accurate spin-dependent electron liquid correlation energies for local spin-density calculations. Canadian Journal of Physics, 58, 12001211.CrossRefGoogle Scholar
Wang, X., Liu, F, Tan, W., Li, W., Feng, X. and Sparks, D.L. (2013) Characteristics of phosphate adsorption-desorption onto ferrihydrite: Comparison with well-crystalline Fe (hydr)oxides. Soil Science, 178, 111.CrossRefGoogle Scholar
WeiB, S. (1990) Mineralfundstellen Atlas Deutschland West. Christian Weise Verlag GmbH, Miinchen, Germany.Google Scholar
Wenzel, M.J. and Steinle-Neumann, G. (2007) Nonequivalence of the octahedral sites of cubic Fe3O4 magnetite. Physical Review B, 75, 214430.Google Scholar