Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-06T10:48:44.429Z Has data issue: false hasContentIssue false

Evidence of fluid-induced myrmekite formation after alkali-feldspar megacrysts: an example from a meta-porphyritic granitoid in Makrohar, Madhya Pradesh, India

Published online by Cambridge University Press:  30 November 2023

Arimita Chakrabarty*
Affiliation:
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
Shreya Karmakar
Affiliation:
Department of Earth and Environmental Studies, National Institute of Technology (NIT), Durgapur 713209, India
Upama Dutta
Affiliation:
Department of Applied Geology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
Sanjoy Sanyal
Affiliation:
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
Pulak Sengupta
Affiliation:
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
*
Corresponding author: Arimita Chakrabarty; Email: arimitachakrabarty@gmail.com

Abstract

A meta-porphyritic granitoid in the Makrohar Granulite Belt, Central India contains extensive myrmekite. This work evaluates the controls of fluid in relation to deformation and the formation of myrmekite all along the periphery of an alkali-feldspar megacryst. Two different myrmekite morphologies are present: (1) vermicular intergrowth of plagioclase (An38–39) and quartz (Myr1); and (2) polygonal aggregates of coarse plagioclase (An45–46) and quartz (Myr2). Petrographic features suggest that myrmekite Myr1 nucleates on alkali-feldspar and plagioclase porphyroclasts and the myrmekite front moved into the alkali feldspar by replacing it; and that myrmekite Myr2 and the secondary biotite which replaces plagioclase porphyroclasts and garnet form together. Deformation had a decisive role in forming the polygonal aggregates of Myr2, however field and microtextural features do not support any significant control of deformation during the formation of Myr1. Reaction modelling and a mass-balance calculation suggest that Ca and Na are added to, and K is removed from, the alkali feldspar during the myrmekite formation at nearly constant Si and Al. However, the secondary biotite-forming reaction, consumes K and releases Ca. Interpretation of the reaction textures in different isothermal–isobaric sections of μK2O–μCaO in the KCFASH system suggest that CaO and K2O moved in opposite directions for myrmekitisation and along their respective chemical potential gradients created between the sites of formation of myrmekite and secondary biotite. The feedback mechanism which operated between the two reaction sites was controlled by infiltration of brine-rich fluid in the meta-granitoid during a regional hydration event (550–600oC and 5–6 kbar). Volume reduction of ~10% during the formation Myr1 and Myr2 drew the brine-rich fluid towards the alkali feldspar and thus facilitated the process of myrmekite formation. Variation in the morphology of quartz in the myrmekite is attributed to the cooling of the complex.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Martin Lee

References

Abart, R., Heuser, D. and Habler, G. (2014) Mechanisms of myrmekite formation: case study from the Weinsberg granite, Moldanubian zone, Upper Austria. Contributions to Mineralogy and Petrology, 168, 1074.CrossRefGoogle Scholar
Abart, R., Petrishcheva, E. and Joachim, B. (2012) Thermodynamic model for growth of reaction rims with lamellar microstructure. American Mineralogist, 97, 231240.CrossRefGoogle Scholar
Ague, J.J. (2003) Fluid infiltration and transport of major, minor, and trace elements during regional metamorphism of carbonate rocks, Wepawaug Schist, Connecticut, USA. American Journal of Science, 303, 753816, https://doi.org/10.2475/ajs.303.9.753CrossRefGoogle Scholar
Ashworth, J.R. (1972) Myrmekites of exsolution and replacement origins. Geological Magazine, 109, 4562.CrossRefGoogle Scholar
Ashworth, J.R. (1986) Myrmekite replacing albite in prograde metamorphism. American Mineralogist, 71, 895899.Google Scholar
Becke, F. (1908) XV. Mitteilungen der Wiener Mineralogischen Gesellschaft. Mineralogy and Petrology, 27, 377391.Google Scholar
Bhowmik, S.K. (2019) The current status of orogenesis in the Central Indian Tectonic Zone: A view from its Southern Margin. Geological Journal, 54, 29122934, https://doi.org/10.1002/gj.3456CrossRefGoogle Scholar
Ceccato, A., Menegon, L., Pennacchioni, G. and Morales, L.F.G. (2018) Myrmekite and strain weakening in granitoid mylonites. Solid Earth, 9, 13991419.CrossRefGoogle Scholar
Cesare, B., Marchesi, C. and Connolly, J.A.D. (2002) Growth of myrmekite coronas by contact metamorphism of granitic mylonites in the aureole of Cima di Vila, Eastern Alps, Italy. Journal of Metamorphic Geology, 20, 203213.CrossRefGoogle Scholar
Chakrabarty, A., Karmakar, S., Mukherjee, S. and Roy, S. (2022) Neoproterozoic reworking of a Mesoproterozoic magmatic arc from the north-eastern part of the Central Indian Tectonic Zone: Implication for the growth and disintegration of the Indian shield in the Proterozoic supercontinental cycles. Precambrian Research, 378, 106758.CrossRefGoogle Scholar
Chakrabarty, A., Mukherjee, S., Karmakar, S., Sanyal, S. and Sengupta, P. (2023) Petrogenesis and in situ U-Pb zircon dates of a suite of granitoid in the northern part of the Central Indian tectonic Zone: Implications for prolonged arc magmatism during the formation of the Columbia supercontinent. Precambrian Research, 387, 106990, https://doi.org/10.1016/j.precamres.2023.106990CrossRefGoogle Scholar
Chatterjee, S., Karmakar, S., Mukherjee, S., Sanyal, S. and Sengupta, S. (2022) Origin of clinopyroxene-ilmenite symplectites in mafic granulites from eastern parts of the Chotanagpur granite gneissic complex, East Indian shield. American Mineralogist, 108, https://doi.org/10.2138/am-2022-8715Google Scholar
Chattopadhyay, A., Bhowmik, S.K. and Roy, A. (2020) Tectonothermal evolution of the Central Indian Tectonic Zone and its implications for Proterozoic supercontinent assembly: The current status. Episodes, 43, 132144, https://doi.org/10.18814/epiiugs/2020/020008CrossRefGoogle Scholar
Chowdhury, P., Talukdar, M., Sengupta, P., Sanyal, S. and Mukhopadhyay, D. (2013) Controls of P-T path and element mobility on the formation of corundum pseudomorphs in Paleoproterozoic high-pressure anorthosite from Sittampundi, Tamil Nadu, India. American Mineralogist, 98, 17251737.CrossRefGoogle Scholar
Cisneros-Lazaro, D.G., Miller, J.A. and Baumgartner, L.P. (2019) Role of myrmekite and associated deformation fabrics in controlling development of granitic mylonites in the Pofadder Shear Zone of southern Namibia. Contributions to Mineralogy and Petrology, 174, 120. Springer.CrossRefGoogle Scholar
Collins, L.G. (2013) Origin of myrmekite as it relates to K-, Na-, and Ca-metasomatism and the metasomatic origin of some granite masses where myrmekite occurs. No. 56, electronic documents, http://www.csun.edu/~vcgeo005/index.htmlGoogle Scholar
Connolly, J.A.D. (2005) Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236, 524541.CrossRefGoogle Scholar
Connolly, J.A.D. (2009) The geodynamic equation of state: What and how. Geochemistry, Geophysics, Geosystems, 10, https://doi.org/10.1029/2009GC002540CrossRefGoogle Scholar
Dempster, T.J., Hollinsworth, A.D., McIntosh, E., Edgar, S., Faithfull, J.W. and Koehn, D. (2021) Deformation-induced and reaction-enhanced permeability in Metabasic Gneisses, Iona, Scotland: controls and scales of retrograde fluid movement. Geofluids, 2021, 118.CrossRefGoogle Scholar
Evans, T.P. (2004) A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schist: Implications for isopleth thermobarometry. Journal of Metamorphic Geology, 22, 547557. https://doi.org/10.1111/j.1525-1314.2004.00532.xCrossRefGoogle Scholar
Fouqué, F. and Michel-Lévy, A. (1879) Minéralogie Micrographique, 2 vol. Memoires et Cartes geologiques de France, 153 pp.Google Scholar
Harlov, D.E. and Wirth, R. (2000) K-feldspar–quartz and K-feldspar–plagioclase phase boundary interactions in garnet–orthopyroxene gneiss's from the Val Strona di Omegna, Ivrea–Verbano Zone, northern Italy. Contributions to Mineralogy and Petrology, 140, 148162.CrossRefGoogle Scholar
Holland, T.J.B. and Powell, R. (1998) An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309343.CrossRefGoogle Scholar
Holland, T.J.B. and Powell, R. (2009) AX: A program to calculate activities of mineral end-members from chemical analyses.Google Scholar
Karmakar, S. (2021) Formation of clinohumite ± spinel in dolomitic marbles from the Makrohar Granulite Belt, Central India: Evidence for Ti mobility during regional metamorphism. American Mineralogist, 106, 18181827.CrossRefGoogle Scholar
Karmakar, S., Mukherjee, S., Sanyal, S. and Sengupta, P. (2017) Origin of peraluminous minerals (corundum, spinel, and sapphirine) in a highly calcic anorthosite from the. Contributions to Mineralogy and Petrology, 172, 67.CrossRefGoogle Scholar
Lang, H., Wachter, A., Peterson, V. and Ryan, J. (2004) Coexisting clinopyroxene/spinel and amphibole/spinel symplectites in metatroctolites from the Buck Creek ultramafic body, North Carolina Blue Ridge. American Mineralogist, 7, 2030.CrossRefGoogle Scholar
Menegon, L., Pennacchioni, G. and Stünitz, H. (2006) Nucleation and growth of myrmekite during ductile shear deformation in metagranites. Journal of Metamorphic Geology, 24, 553568.CrossRefGoogle Scholar
Mondal, S., Uapadhyay, D. and Banerjee, A. (2017) The origin of rapakivi feldspar by a fluid-induced coupled dissolution–reprecipitation process. Journal of Petrology, 58, 13931418, doi: 10.1093/petrology/egx058CrossRefGoogle Scholar
Phillips, E.R. (1974) Myrmekite – one hundred years later. Lithos, 7, 181194.CrossRefGoogle Scholar
Phillips, E.R. (1980) On polygenetic myrmekite. Geological Magazine, 117, 2936.CrossRefGoogle Scholar
Philpotts, A.R. and Ague, J.J. (2009) Principles of Igneous and Metamorphic Petrology. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Plümper, O. and Putnis, A. (2009) The complex hydrothermal history of granitic rocks: multiple feldspar replacement reactions under subsolidus conditions. Journal of Petrology, 50, 967987.CrossRefGoogle Scholar
Putnis, A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689708.CrossRefGoogle Scholar
Putnis, A. and Austrheim, H. (2010) Fluid-induced processes: Metasomatism and metamorphism. Geofluids, 10, 254269, https://doi.org/10.1111/j.1468-8123.2010.00285.xCrossRefGoogle Scholar
Remmert, P., Heinrich, W., Wunder, B., Morales, L., Wirth, R., Rhede, D. and Abart, R. (2018) Synthesis of monticellite–forsterite and merwinite–forsterite symplectites in the CaO–MgO–SiO2 model system: influence of temperature and water content on microstructure evolution. Contributions to Mineralogy and Petrology, 173, 117.CrossRefGoogle Scholar
Roy Choudhury, S., Dey, A., Mukherjee, S., Sanyal, S., Karmakar, S. and Sengupta, P. (2023) On the factors controlling the incorporation of aluminium within titanites: a case study from medium pressure calc-silicate granulites in parts of the East Indian shield. Mineralogy and Petrology, 117, https://doi.org/10.1007/s00710-023-00826-1CrossRefGoogle Scholar
Schwantke, A. (1909) Die Beimischung von Ca in Kalifeldspat und die Myrmekitbildung. Centraalblad Mineralogische, 1909, 311316.Google Scholar
Sederholm, J.J. (1899) Über eine archäische Sedimentformation im südwestlichen Finland und ihre Bedeutung für die Erklärung der Entstehungsweise des Grundgebirges, Vol. 6. Bulletin de la Commission géologique de Finlande, Kupio, Finland.Google Scholar
Simpson, C. and Wintsch, R.P. (1989) Evidence for deformation-induced K-feldspar replacement by myrmekite. Journal of Metamorphic Geology, 7, 261275.CrossRefGoogle Scholar
Stüwe, K. (1997) Effective bulk composition changes due to cooling: a model predicting complexities in retrograde reaction textures. Contributions to Mineralogy and Petrology, 129, 4352, https://doi.org/10.1007/s004100050322CrossRefGoogle Scholar
Torres-Roldan, R.L., Garcia-Casco, A. and Garcia-Sanchez, P.A. (2000) CSpace: An integrated workplace for the graphical and algebraic analysis of phase assemblages on 32-bit wintel platforms. Computers and Geosciences, 26, 779793.CrossRefGoogle Scholar
Touret, J.L.R., Santosh, M. and Huizenga, J.M. (2022) Composition and evolution of the continental crust: Retrospect and prospect. Geoscience Frontiers, 13, 101428.CrossRefGoogle Scholar
Tsurumi, J., Hosonuma, H. and Kanagawa, K. (2002) Strain localization due to a positive feedback of deformation and myrmekite-forming reaction in granite and aplite mylonites along the Hatagawa Shear Zone of NE Japan. Journal of Structural Geology, 25, 557574.CrossRefGoogle Scholar
Vernon, R.H. (1991) Questions about myrmekite in deformed rocks. Journal of Structural Geology, 13, 979985.CrossRefGoogle Scholar
Vernon, R.H. (2004) A Practical Guide To Rock Microstructure. Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511807206CrossRefGoogle Scholar
Vernon, R.H., Williams, V.A. and D'arcy, W.F. (1983) Grain-size reduction and foliation development in a deformed granitoid batholith. Tectonophysics, 92, 123145.CrossRefGoogle Scholar
Whitney, D.L. and Evan, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar
Yuguchi, T., Sasao, E., Ishibashi, M. and Nishiyama, T. (2015) Hydrothermal chloritization processes from biotite in the Toki granite, Central Japan: Temporal variations of the compositions of hydrothermal fluids associated with chloritization. American Mineralogist, 100, 11341152.CrossRefGoogle Scholar
Yuguchi, T., Shoubuzawa, K., Ogita, Y., Yagi, K., Ishibashi, M., Sasao, E. and Nishiyama, T. (2019) Role of micropores, mass transfer, and reaction rate in the hydrothermal alteration process of plagioclase in a granitic pluton. American Mineralogist, 104, 536556.CrossRefGoogle Scholar
Yuguchi, T., Yuasa, H., Izumino, Y., Nakashima, K., Sasao, E. and Nishiyama, T. (2022) Micropores and mass transfer in the formation of myrmekites. American Mineralogist, 107, 476488.CrossRefGoogle Scholar
Supplementary material: File

Chakrabarty et al. supplementary material

Chakrabarty et al. supplementary material
Download Chakrabarty et al. supplementary material(File)
File 37.3 KB