Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-22T05:21:54.976Z Has data issue: false hasContentIssue false

Flow field-flow fractionation (FlFFF) coupled to sensitive detection techniques: a way to examine radionuclide interactions with nanoparticles

Published online by Cambridge University Press:  05 July 2018

M. Bouby*
Affiliation:
Karlsruher Institut für Technologie-Campus Nord (KIT-CN), Institut für Nukleare Entsorgung (INE), Postfach 3640, D-76021 Karlsruhe, Germany
N. Finck
Affiliation:
Karlsruher Institut für Technologie-Campus Nord (KIT-CN), Institut für Nukleare Entsorgung (INE), Postfach 3640, D-76021 Karlsruhe, Germany
H. Geckeis
Affiliation:
Karlsruher Institut für Technologie-Campus Nord (KIT-CN), Institut für Nukleare Entsorgung (INE), Postfach 3640, D-76021 Karlsruhe, Germany

Abstract

The capabilities of the asymmetrical flow field-flow fractionation (AsFlFFF) technique coupled with inductively coupled plasma mass spectrometry and UV–Vis spectrophotometry in the characterization of synthetic and natural colloidal samples are demonstrated in two different systems. The first system is a sol of hectorite which was co-precipitated in the presence of Lu. The results show that hectorite nanoparticles can be mobilized from a bulk sample and that they still contain the dopant Lu, which is homogeneously incorporated into the hectorite crystal structure. The second system is a natural groundwater from the Gorleben site on the northern German plain, which is being tentatively explored to assess its suitability as a nuclear waste repository. Colloidal matter heterogeneity is evident in this system. Alkaline-earth elements are mainly found as ionic species. Rare earth elements (REEs) and actinides are distributed in two main colloidal fractions: the heavier REEs and U are concentrated in the <4 nm fraction corresponding to the size range of organic colloidal particles, whereas lighter REEs and Th are concentrated in colloidal particles between 4 and 18 nm in size that are both organic and inorganic in nature. Similar results are reported for another sample from the same site, collected ∼2 km from the first one, demonstrating the homogeneity of the aquifer system and/or a possible colloid migration pathway. The extent of the reversibility of colloid–radionuclide interactions remains to be evaluated.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artinger, R., Kienzler, B., Schü ssler, W. and Kim, J.I. (1998) Effects of humic substances on the migration of radionuclides: complexation and transport of actinides. Pp. 2343.in: Effects of humic substances on the migration of radionuclides: complexation and transport of actinides. First technical progress report (G. Buckau, editor). Forschungszentrum Karlsruhe, Wissenschaftliche Berichte, FZKA 6124, Germany.Google Scholar
Baalousha, M., Stolpe, B. and Read, J.R. (2011) Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. Journal of Chromatography, A1218, 40784103.CrossRefGoogle Scholar
Benincasa, M.A., Cartoni, G. and Imperia, N. (2002) Effects of ionic strength and electrolyte composition on the aggregation of fractionated humic substances studied by flow field-flow fractionation. Journal of Separation Science, 25, 405415.3.0.CO;2-F>CrossRefGoogle Scholar
Bolea, E., Gorriz, M.P., Bouby, M., Laborda, F., Castillo, J.R. and Geckeis, H. (2006) Multielement characterization of metal-humic substances complexation by size exclusion chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma-mass spectrometry detection: a comparative approach. Journal of Chromatography, A1129, 236246.CrossRefGoogle Scholar
Bouby, M. and Geckeis, H. (2011) Characterization of colloid-borne actinides by flow field-flow fractionation (FlFFF) multidetector analysis (MDA). Pp. 105135.in: Actinide Nanoparticle Research (S.N. Kalmykov and M.A. Denecke, editors). Springer- Verlag, Berlin.Google Scholar
Bouby, M., Geckeis, H. and Geyer, F.W. (2008) Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles. Analytical and Bioanalytical Chemistry, 392, 14471457.CrossRefGoogle ScholarPubMed
Bouby, M., Geckeis, H., Lützenkirchen, J., Mihai, S. and Schäfer, T. (2011) Interaction of bentonite colloids with Eu, Th and U in presence of humic acid: a flow field-flow fractionation study. Geochimica et Cosmochimica Acta, 75, 38663880.CrossRefGoogle Scholar
Brandt, H., Bosbach, D., Panak, P.J. and Fanghänel, T. (2007) Structural incorporation of Cm(III) in trioctahedral smectite hectorite: a time-resolved laser fluorescence spectroscopy (TRLFS) study. Geochimica et Cosmochimica Acta, 71, 145154.CrossRefGoogle Scholar
Buck, E.C. and Bates, J.K. (1999) Microanalysis of colloids and suspended particles from nuclear waste glass alteration. Applied Geochemistry, 14, 635653.CrossRefGoogle Scholar
Buckau, G., Artinger, R., Fritz, P., Geyer, S., Kim, J.I. and Wolf, M. (2000a) Origin and mobility of humic colloids in the Gorleben aquifer system. Applied Geochemistry, 15, 171179.CrossRefGoogle Scholar
Buckau, G., Artinger, R., Geyer, S., Wolf, M., Fritz, P. and Kim, J.I. (2000b) Groundwater in-situ generation of aquatic humic and fulvic acids and the mineralization of sedimentary organic carbon. Applied Geochemistry, 15, 819832.CrossRefGoogle Scholar
Cizdziel, J.V., Guo, C.X., Steinberg, S.M., Yu, Z.B. and Johannesson, K.H. (2008) Chemical and colloidal analyses of natural seep water collected from the exploratory studies facility inside Yucca Mountain, Nevada, USA. Environmental Geochemistry and Health, 30, 3144.CrossRefGoogle ScholarPubMed
Claveranne-Lamolére, C., Aupiais, J., Lespes, G., Frayret, J., Pili, E., Pointurier, F. and Potin-Gautier, M. (2011) Investigation of uranium-colloid interactions in soil by dual field-flow fractionation/capillary electrophoresis hyphenated with inductively coupled plasma-mass spectrometry. Talanta, 85, 25042510.CrossRefGoogle ScholarPubMed
Cornell, R.M. and Schwertmann, U. (1996) The Iron Oxides. VCH, Weinheim, New York.Google Scholar
Crançon, P., Pili, E. and Charlet, L. (2010) Uranium facilitated transport by water-dispersible colloids in field and columns. Science of the Total Environment, 408, 21182128.CrossRefGoogle ScholarPubMed
Dahlqvist, R., Andersson, K., Ingri, J., Larsson, T., Stolpe, B. and Turner, D. (2007) Temporal variations of colloidal carrier phases and associated trace elements in a boreal river. Geochimica et Cosmochimica Acta, 71, 53395354.CrossRefGoogle Scholar
Diaz, X., Johnson, W.P., Fernandez, D. and Naftz, D.L. (2009) Size and elemental distributions of nano- to micro-particulates in the geochemically-stratified Great Salt Lake. Applied Geochemistry, 24, 16531665.CrossRefGoogle Scholar
Degueldre, C., Pfeiffer, H.R., Alexander, W., Wernli, B. and Bruetsch R. (1996) Colloid properties in granitic groundwater systems. I: sampling and characterisation. Applied Geochemistry, 11, 677695.CrossRefGoogle Scholar
Denecke, M.A. (2006) Actinides speciation using X-ray absorption fine structure spectroscopy. Coordination Chemistry Reviews, 250, 730754.CrossRefGoogle Scholar
Dubascoux, S., Le Hécho, I., Hasselöv, M., von der Kammer, F., Potin Gautier, M. and Lespes, G. (2010) Field-flow fractionation and inductively coupled mass spectrometer coupling: history, developments and applications. Journal of Analytical Atomic Spectrometry, 25, 613623.CrossRefGoogle Scholar
Finck, N., Schlegel, M.L. and Bosbach, D. (2009) Sites of Lu(III) sorbed to and coprecipitated with hectorite. Environmental Science & Technology, 43, 88078812.CrossRefGoogle ScholarPubMed
Finck, N., Bouby, M., Dardenne, K. and Geckeis, H. (2012) Characterization of Eu(III) co-precipitated with and adsorbed on hectorite: from macroscopic crystallites to nanoparticles. Mineralogical Magazine, 76, PAGINATION.CrossRefGoogle Scholar
Geckeis, H., Rabung, T., Ngo Manh, T., Kim, J.I. and Beck, H.P. (2002) Humic colloid-borne natural polyvalent metal ions: dissociation experiment. Environmental Science & Technology, 36, 29462952.CrossRefGoogle ScholarPubMed
Geckeis, H., Ngo Manh, T., Bouby, M. and Kim, J.I. (2003) Aquatic colloids relevant to radionuclide migration: characterization by size fractionation and ICP-mass spectrometric detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217, 101108.CrossRefGoogle Scholar
Geckeis, H., Rabung, T. and Schäfer, T. (2011) Actinide-nanoparticle interaction: generation, stability and mobility. Pp. 130.in: Actinide Nanoparticle Research (S.N. Kalmykov and M.A. Denecke, editors). Springer-Verlag, Berlin.Google Scholar
GRS (2011) Gesellschaft fü r Anlagen- und Reaktorsicherheit (GRS): http://www.grs.de/vorlaeufige- sicherheitsanalyse-gorleben-vsg.Google Scholar
Hartland, A., Fairchild, I.J., Lead, J.R., Zhang, H. and Baalousha, M. (2011) Size speciation and lability of NOM-metal complexes in hyperalkaline cave dripwater. Geochimica et Cosmochimica Acta, 75, 75337551.CrossRefGoogle Scholar
Hauser, W., Geckeis, H., Kim, J.I. and Fierz, Th. (2002) A mobile laser-induced breakdown detection system and its application for the in situ-monitoring of colloid migration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 203, 3745.CrossRefGoogle Scholar
Hochella, M.F., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L. and Twining, B.S. (2008) Nanominerals, mineral nanoparticles and earth systems. Science, 319, 16311635.CrossRefGoogle ScholarPubMed
Kim, J.I. (1991) Actinide colloid generation in groundwater. Radiochimica Acta, 52/53, 7181.CrossRefGoogle Scholar
Kim, M.A., Panak, P.J., Yun, J.I., Kim, J.I., Klenze, R. and Kö hler, K. (2003) Interaction of actinides with aluminosilicate colloids in status nascendi. Part I: generation and characterization of actinide(III)- pseudocolloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 216, 97108.CrossRefGoogle Scholar
Kwon, K.D., Refson, K. and Sposito, G. (2010) Surface complexation of Pb(II) by hexagonal birnessite nanoparticles. Geochimica et Cosmochimica Acta, 74, 67316740.CrossRefGoogle Scholar
Lyven, B., Hassellov, M., Turner, D.R., Haraldsson, C. and Andersson, K. (2003) Competition between ironand carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS. Geochimica et Cosmochimica Acta, 67, 37913802.CrossRefGoogle Scholar
Missana, T., Alonso, U. and Turrero, M.J. (2003) Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository. Journal of Contaminant Hydrology, 61, 1731.CrossRefGoogle ScholarPubMed
Ngo Manh, T., Geckeis, H., Kim, J.I. and Beck, H. (2001) Application of the flow field flow fractionation (FFFF) to the characterization of aquatic humic colloids: evaluation and optimization of the method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 181, 289301.CrossRefGoogle Scholar
Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F., Merkulov, A., Clark, S.B., Tkachev, V.V. and Myasoedov, B.F. (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science, 314, 638641.CrossRefGoogle ScholarPubMed
Plaschke, M., Römer, J. and Kim, J.I. (2002) Characterization of Gorleben groundwater colloids by Atomic Force Microscopy. Environmental Science & Technology, 36, 44834488.CrossRefGoogle ScholarPubMed
Plathe, K.L., von der Kammer, F., Hassellöv, M., Moore, J., Murayama, M., Hofmann, T. and Hochella, M.F. (2010) Using FlFFF and a TEM to determine trace metal-nanoparticle associations in riverbed sediment. Environmental Chemistry, 7, 8293.CrossRefGoogle Scholar
Ranville, J.F., Hendry, M.J., Reszat, T.N., Xie, Q. and Honeyman, B.D. (2007) Quantifying uranium complexation by groundwater dissolved organic carbon using asymmetrical flow field-flow fractionation. Journal of Contaminant Hydrology, 91, 233246.CrossRefGoogle ScholarPubMed
Reszat, T.N. and Hendry, M.J. (2007) Complexation of aqueous elements by DOC in a clay aquitard. Groundwater, 45, 542553.CrossRefGoogle Scholar
Roberts, K.A., Santschi, P.H., Leppard, G. and West, M.M. (2004) Characterization of organic-rich colloids from surface and ground waters at the actinide-contaminated Rocky Flats Environmental Technology Site (RFETS), Colorado, USA. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 244, 105111.CrossRefGoogle Scholar
Schäfer, T., Chanudet, V., Claret, F. and Filella, M. (2007) Spectromicroscopy mapping of colloidal/ particulate organic matter in Lake Brienz, Switzerland. Environmental Science & Technology, 41, 78647869.CrossRefGoogle ScholarPubMed
Schimpf, M., Caldwell, K. and Giddings, J.C. (2000) Field-Flow Fractionation Handbook. John Wiley & Sons, New York.Google Scholar
Schlegel, M.L. (2008) Polarized EXAFS characterization of the sorption mechanism of yttrium on hectorite. Radiochimica Acta, 96, 667672.CrossRefGoogle Scholar
Sohnke, J.E. (2006) Lanthanide-humic substances complexation. II. Calibration of humic ion-binding model V. Environmental Science & Technology, 40, 74817487.CrossRefGoogle Scholar
Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry, third edition. John Wiley and Sons, New York.Google Scholar
Suteerapataranon, S., Bouby, M., Geckeis, H., Fanghänel, T. and Grudpan, K. (2006) Interaction of trace elements in acid mine drainage solution with humic acid. Water Research, 40, 20442054.CrossRefGoogle ScholarPubMed
Thien, B., Godon, N., Hubert, F., Angéli, F., Gin, S. and Ayral, A. (2010) Structural identification of a trioctahedral smectite formed by the aqueous alteration of nuclear glass. Applied Clay Science, 49, 135141.CrossRefGoogle Scholar
Utsunomiya, S., Kersting, A.B. and Ewing, R.C. (2009) Groundwater nanoparticles in the far-field at the Nevada Test site: mechanism for radionuclide transport. Environmental Science & Technology, 43, 12931298.CrossRefGoogle ScholarPubMed
Villalobos, M., Bargar, J. and Sposito, G. (2005) Trace metal retention on biogenic manganese oxide nanoparticles. Elements, 1, 223226.CrossRefGoogle Scholar
Wijnhoven, J.E.G.J., Koorn, J.P., Poppe, H. and Kok, W.T. (1995) Hollow-fiber flow field-flow fractionation of polystyrene sulfonates. Journal of Chromatography, A699, 119129.CrossRefGoogle Scholar
Woods, G.C., Simpson, M.J., Kelleher, B.P., McCaul, M., Kingery, W.L. and Simpson, A.J. (2010) Online high-performance size exclusion chromatographynuclear magnetic resonance for the characterization of dissolved organic matter. Environmental Science & Technology, 44, 624630.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bouby et al. supplementary material

Supplementary Tables S1-S4

Download Bouby et al. supplementary material(File)
File 678.4 KB