Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-20T21:16:38.121Z Has data issue: false hasContentIssue false

Fluor-tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3F, a new tourmaline from San Piero in Campo (Elba, Italy) and new data on tsilaisitic tourmaline from the holotype specimen locality

Published online by Cambridge University Press:  02 January 2018

Ferdinando Bosi*
Affiliation:
Dipartimento di Scienze della Terra, Sapienza Universita` di Roma, P. le Aldo Moro, 5, I-00185 Rome, Italy CNR- Istituto di Geoscienze e Georisorse, VOS Roma, P. le Aldo Moro, 5, I-00185 Rome, Italy
Giovanni B. Andreozzi
Affiliation:
Dipartimento di Scienze della Terra, Sapienza Universita` di Roma, P. le Aldo Moro, 5, I-00185 Rome, Italy CNR- Istituto di Geoscienze e Georisorse, VOS Roma, P. le Aldo Moro, 5, I-00185 Rome, Italy
Giovanna Agrosi
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Universita` di Bari - Campus, via E. Orabona 4, I-70125 Bari, Italy
Eugenio Scandale
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Universita` di Bari - Campus, via E. Orabona 4, I-70125 Bari, Italy

Abstract

Fluor-tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3F, is a new mineral of the tourmaline supergroup. It occurs in an aplitic dyke of a LCT-type pegmatite body from Grotta d'Oggi, San Piero in Campo, Elba Island, Italy, in association with quartz, K-feldspar, plagioclase, elbaite, schorl, fluor-elbaite and tsilaisite. Crystals are greenish yellow with a vitreous lustre, sub-conchoidal fracture and white streak. Fluor-tsilaisite has a Mohs hardness of ∼7 and a calculated density of 3.134 g/cm3. In plane-polarized light, fluor-tsilaisite is pleochroic (O = pale greenish yellow and E = very pale greenish yellow), uniaxial negative. Fluor-tsilaisite is rhombohedral, space group R3m, a = 15.9398(6), c = 7.1363(3) Å, V = 1570.25(11) Å3, Z = 3. The crystal structure of fluor-tsilaisite was refined to R1 = 3.36% using 3496 unique reflections collected with Mo X-ray intensity data. Crystal-chemical analysis resulted in the empirical formula: X(Na0.690.29Ca0.02)Σ1.00Y(Mn2+1.29Al1.21Li0.56Ti0.03)Σ6.00ZAl6T(Si5.98Al0.03)Σ6.00B2.92O27V(OH)3W[F0.39(OH)0.25O0.36]Σ1.00.

Comparisons were performed between fluor-tsilaisite and a tsilaisitic tourmaline from the same locality as the holotype specimen. This latter tourmaline sample was selected for this study due to its remarkable composition (MnO = 11.63 wt.%), the largest Mn content found in tourmaline so far.

Fluor-tsilaisite is related to tsilaisite through the substitution WF ↔ W(OH) and with fluor-elbaite through the substitution Y(Al + Li) ↔ 2YMn2+, and appears to be a stepwise intermediate during tourmaline evolution from tsilaisite to fluor-elbaite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrosì, G., Bosi, F., Lucchesi, S., Melchiorre, G. and Scandale, E. (2006) Mn-tourmaline crystals from island of Elba (Italy): Growth history and growth marks. American Mineralogist 91, 944-952.CrossRefGoogle Scholar
Andreozzi, G.B., Bosi, F. and Longo, M. (2008) Linking Mössbauer and structural parameters in elbaiteschorl- dravite tourmalines. American Mineralogist 93, 658-666.CrossRefGoogle Scholar
BaČík, P., Cempírek, J., Uher, P., Novák, M., Ozdín, D., Filip, J., Š koda, R., Breiter, K., Klementová, M. and Dˇ ud’a, R. (2013) Oxy-schorl, Na(Fe2 2+Al) Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice, Czech Republic. American Mineralogist 98, 485-492.CrossRefGoogle Scholar
Bosi, F. (2008) Disordering of Fe2+ over octahedrally coordinated sites of tourmaline. American Mineralogist 93, 1647-1653.CrossRefGoogle Scholar
Bosi, F. (2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach. Mineralogical Magazine 74, 1037-1044.CrossRefGoogle Scholar
Bosi, F. (2011) Stereochemical constraints in tourmaline: from a short-range to a long-range structure. The Canadian Mineralogist 49, 17-27.CrossRefGoogle Scholar
Bosi, F. (2013) Bond-valence constraints around the O1 site of tourmaline. Mineralogical Magazine 77, 343-351.CrossRefGoogle Scholar
Bosi, F. and Andreozzi, G.B. (2013) A critical comment on Ertl et al. (2012) “Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+- and Mn2+-rich tourmaline”. American Mineralogist 98, 2183-2192.CrossRefGoogle Scholar
Bosi, F. and Lucchesi, S. (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. American Mineralogist 92, 1054-1063.CrossRefGoogle Scholar
Bosi, F. and Skogby, H. (2013) Oxy-dravite, Na(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist 98, 1442-1448.CrossRefGoogle Scholar
Bosi, F., Agrosì, G., Lucchesi, S., Melchiorre, G. and Scandale, E. (2005) Mn-tourmaline from island of Elba (Italy): Crystal chemistry. American Mineralogist 90, 1661-1668.CrossRefGoogle Scholar
Bosi, F., Balić-Žunić, T. and Surour, A.A. (2010) Crystal structure analysis of four tourmalines from the Cleopatra’s Mines (Egypt) and Jabal Zalm (Saudi Arabia), and the role of Al in the tourmaline group. American Mineralogist 95, 510-518.CrossRefGoogle Scholar
Bosi, F., Reznitskii, L. and Skogby, H. (2012a) Oxychromium-dravite NaCr3(Cr4Mg2)(Si6O18)(BO3)3 (OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist 97, 2024-2030.CrossRefGoogle Scholar
Bosi, F., Skogby, H., Agrosì, G. and Scandale, E. (2012b) Tsilaisite, NaMn3Al6(Si6O18) (BO3)3 (OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d’Oggi, San Pietro in Campo, island of Elba, Italy. American Mineralogist 97, 989-994.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Agrosì, G. and Scandale, E. (2012c) Fluor-tsilaisite, IMA 2012-044. CNMNC Newsletter No. 14, October 2012, page 1287; Mineralogical Magazine 76, 1281-1288.Google Scholar
Bosi, F., Skogby, H., Hålenius, U. and Reznitskii, L. (2013a) Crystallographic and spectroscopic characterization of Fe-bearing chromo-alumino-povondraite and its relations with oxy-chromium-dravite and oxy-dravite. American Mineralogist 98, 1557-1564.CrossRefGoogle Scholar
Bosi, F., Reznitskii, L. and Sklyarov, E.V. (2013b) Oxyvanadium-dravite NaV3(V4Mg2) (Si6O18) (BO3)3(OH)3O: crystal structure and redefinition of the “vanadium-dravite” tourmaline. American Mineralogist 98, 501-505.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Skogby, H., Lussier, A.J., Abdu, Y. and Hawthorne, F.C. (2013c) Fluor-elbaite, Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F, a new mineral species of the tourmaline supergroup. American Mineralogist 98, 297-303.CrossRefGoogle Scholar
Bosi, F., Skogby, H., Reznitskii, L. and Hålenius, U. (2014a) Vanadio-oxy-dravite, NaV3(Al4Mg2) (Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist 99, 218-224.CrossRefGoogle Scholar
Bosi, F., Reznitskii, L., Skogby, H. and Hålenius, U. (2014b) Vanadi o -oxy-chromium-dravi t e , NaV3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist 99, 1155-1162.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244-247.CrossRefGoogle Scholar
Burns, P.C., MacDonald, D.J. and Hawthorne, F.C. (1994) The crystal chemistry of manganese-bearing elbaite. The Canadian Mineralogist 32, 31-41.Google Scholar
Clark, C.M., Hawthorne, F.C. and Ottolini, L. (2011) Fluor-dravite, NaMg3Al6Si6O18(BO3)3(OH)3F, a new mineral species of the tourmaline group from the Crabtree emerald mine, Mitchell County, North Carolina: description and crystal structure. The Canadian Mineralogist 49, 57-62.CrossRefGoogle Scholar
Ertl, A., Hughes, J.M., Prowatke, S., Rossman, G.R., London, D. and Fritz, E.A. (2003) Mn-rich tourmaline from Austria: structure, chemistry, optical spectra, and relations to synthetic solid solutions. American Mineralogist 88, 1369-1376.CrossRefGoogle Scholar
Ertl, A., Kolitsch, U., Darby Dyar, M., Meyer, H.-P., Henry, D.J., Rossman, G.R., Prem, M., Ludwig, T., Nasdala, L., Lengauer, C.L. and Tillmanns, E. (2011) Fluor-schorl, IMA 2010-067. CNMNC Newsletter No. 8, April 2011, page 291; Mineralogical Magazine 75, 289-294.Google Scholar
Ertl, A., Kolitsch, U., Dyar, M.D., Hughes, J.M., Rossman, G.R., Pieczka, A., Henry, D.J., Pezzotta, F., Prowatke, S., Lengauer, C.L., Kö rner, W., Brandstatter, F., Francis, C.A., Prem, M. and Tillmans, E. (2012) Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: evidence from Fe2+- and Mn2+-rich tourmaline. American Mineralogist 97, 1402-1416.CrossRefGoogle Scholar
Filip, J., Bosi, F., Novák, M., Skogby, H., TuČek, J., Čuda, J. and Wildner, M. (2012) Redox processes of iron in the tourmaline structure: example of the hightemperature treatment of Fe3+-rich schorl. Geochimica et Cosmochimica Acta 86, 239-256.CrossRefGoogle Scholar
Foit, F.F. Jr., (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships. American Mineralogist 74, 422-431.Google Scholar
Grice, J.D. and Ercit, T.S. (1993) Ordering of Fe and Mg in the tourmaline crystal structure: the correct formula. Neues Jahrbuch für Mineralogie, Abhandlungen 165, 245-266.Google Scholar
Hawthorne, F.C. (1996) Structural mechanisms for lightelement variations in tourmaline. The Canadian Mineralogist 34, 123-132.Google Scholar
Hawthorne, F.C. (2002) Bond-valence constraints on the chemical composition of tourmaline. The Canadian Mineralogist 40, 789-797.CrossRefGoogle Scholar
Hawthorne, F.C. and Henry, D. (1999) Classification of the minerals of the tourmaline group. European Journal of Mineralogy 11, 201-215.CrossRefGoogle Scholar
Henry, D.J. and Dutrow, B.L. (2011) The incorporation of fluorine in tourmaline: Internal crystallographic controls or external environmental influences? The Canadian Mineralogist 49, 41-56.Google Scholar
Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B., Uher, P. and Pezzotta, F. (2011) Nomenclature of the tourmaline supergroup minerals. American Mineralogist 96, 895-913.CrossRefGoogle Scholar
London, D. (2011) Experimental synthesis and stability of tourmaline: a historical perspective. The Canadian Mineralogist 49, 117-136.CrossRefGoogle Scholar
Lussier, A.J., Aguiar, P.M., Michaelis, V.K., Kroeker, S., Herwig, S., Abdu, Y. and Hawthorne, F.C. (2008) Mushroom elbaite from the Kat Chay mine, Momeik, near Mogok, Myanmar: I. Crystal chemistry by SREF, ,EMPA, MAS NMR and Mössbauer spectroscopy. Mineralogical Magazine 72, 747-761.CrossRefGoogle Scholar
Lussier, A.J., Abdu, Y. Hawthorne, F.C., Michaelis, V.K., Aguiar, P.M. and Kroeker, S. (2011a) Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. I. Crystal chemistry and structure by SREF and 11B and 27Al MAS NMR spectroscopy. The Canadian Mineralogist 49, 63-88.CrossRefGoogle Scholar
Lussier, A.J., Hawthorne, F.C., Aguiar, P.M., Michaelis, V.K. and Kroeker, S. (2011b) Elbaite-liddicoatite from Black Rapids glacier, Alaska. Periodico di Mineralogia 80, 57-73.Google Scholar
MacDonald, D.J. and Hawthorne, F.C. (1995) The crystal chemistry of Si = Al substitution in tourmaline. The Canadian Mineralogist 33, 849-858.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV: the compatibility concept and its application. The Canadian Mineralogist 19, 441-450.Google Scholar
Nishio-Hamane, D., Minakawa, T., Yamaura, J., Oyama, T., Ohnishi, M. and Shimobayashi, N. (2013) Adachiite, IMA 2012-101. CNMNC Newsletter No. 16, August 2013, page 2700; Mineralogical Magazine 77, 2695-2709.Google Scholar
Nishio-Hamane, D., Minakawa, T., Yamaura, J., Oyama, T., Ohnishi, M. and Shimobayashi, N. (2014) Adachiite, a Si-poor member of the tourmaline supergroup from the Kiura mine, Oita Prefecture, Japan. Journal of Mineralogical and Petrological Sciences 109, 74-78.CrossRefGoogle Scholar
Novák, M., škoda, P., Filip, J., Macek, I. and VaculoviČ, T. (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the TřebíČPluton, Czech Republic; electron microprobe, Mössbauer and LA-ICP-MS study. The Canadian Mineralogist 49, 359-380.CrossRefGoogle Scholar
Novák, M., Ertl, A., Povondra, P., Galiová, M.V., Rossman, G.R., Pristacz, H., Prem, M., Giester, G., Gadas, P. and Š koda, R. (2013) Darrellhenryite, Na(LiAl2)Al6(BO3)3Si6O18(OH)3O, a new mineral from the tourmaline supergroup. American Mineralogist 98, 1886-1892.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 31-75. in: Electron Probe Quantitation (K.F.J. Heinrich and D.E. Newbury, editors). Plenum Press, New York.CrossRefGoogle Scholar
Reznitskii, L., Clark, C.M., Hawthorne, F.C., Grice, J.D., Skogby, H., Hålenius, U. and Bosi, F. (2014) Chromo-alumino-povondraite, NaCr3(Al4Mg2) (Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist 99, 1767-1773.CrossRefGoogle Scholar
Rossman, G.R. and Mattson, S.M. (1986) Yellow, Mnrich elbaite with Mn–Ti intervalence charge transfer. American Mineralogist 71, 599-602.Google Scholar
Sheldrick, G.M. (2013) SHELXL2013. University of Gö ttingen, Germany.Google Scholar
Skogby, H., Bosi, F. and Lazor, P. (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Physics and Chemistry of Minerals 39, 811-816.CrossRefGoogle Scholar
Wright, S.E., Foley, J.A. and Hughes, J.M. (2000) Optimization of site occupancies in minerals using quadratic programming. American Mineralogist 85, 524-531.CrossRefGoogle Scholar
Supplementary material: File

Bosi et al. supplementary material

CIF

Download Bosi et al. supplementary material(File)
File 41.2 KB