Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T10:42:05.741Z Has data issue: false hasContentIssue false

FTIR transmission spectroscopy of sideronatrite, a sodium-iron hydrous sulfate

Published online by Cambridge University Press:  05 July 2018

G. Della Ventura*
Affiliation:
Dipartimento di Scienze, Università di Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Rome, Italy INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati, Rome, Italy
G. Ventruti
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università di Bari, via Orabona, 4, I-70125 Bari, Italy
F. Bellatreccia
Affiliation:
Dipartimento di Scienze, Università di Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Rome, Italy INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati, Rome, Italy
F. Scordari
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università di Bari, via Orabona, 4, I-70125 Bari, Italy
M. Cestelli Guidi
Affiliation:
INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati, Rome, Italy

Abstract

This paper relates an infrared (IR) (6000–2500; 1400–400 cm–1) spectroscopic study of sideronatrite, Na2Fe3+(SO4)2(OH)·3H2O. Spectra in the 600–1250 cm–1 range are dominated by fundamental S–O absorption bands. Factor-group analysis based on the space group P212121(D42) is in accordance with the observed band multiplicity. A broad and convolute absorption centred around 3400 cm–1 and a sharp band at 3605 cm–1 are observed in the 2900–3900 cm–1 frequency region. The resolution of the broad band is significantly improved at liquid nitrogen temperature; seven components can be fitted to the pattern and these can be assigned to H2O/OH molecules in the structure. All components in the broad band and the sharp absorption at 3605 cm–1 are strongly polarized for E//a, in accordance with the structure analysis results. Infrared transmission spectroscopy is a useful tool to identify these sulfate minerals occurring in specific geological environments.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, H.H. and Kerr, P.F. (1965) Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals. American Mineralogist, 50, 132147.Google Scholar
Aubrey, A. Cleaves, H.J., Chalmers, J.H., Skelley, A.M., Mathies, R.A., Grunthaner, F.J., Ehrenfreund, P. and Bada, J.L. (2006) Sulfate minerals and organic compounds on Mars. Geology, 34, 357360.CrossRefGoogle Scholar
Bishop, J.L. and Murad E. (2005) The visible and infrared spectral properties of jarosite and alunite. American Mineralogist, 90, 11001107.CrossRefGoogle Scholar
Bishop, J.L., Dyar, M.D., Lane, M.D. and Banfield, J.F. (2004) Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth. International Journal of Astrobiology, 3, 275285.CrossRefGoogle Scholar
Cloutis, E.A., Hawthorne, F.C., Mertzman, S.A., Krenn, K., Craig, M.A., Marcino, D., Methot, M., Strong, J., Mustard, J.F., Blaney, D.L., Bell III,, J.F. and Vilas, F. (2006) Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus, 184, 121157.CrossRefGoogle Scholar
Ďurovič, S. (1997) Fundamentals of the OD theory. Pp. 228. in: Modular Aspects of Minerals (S. Merlino, editor). EMU Notes in Mineralogy, 1. Eötvös University Press, Budapest.Google Scholar
Falk, M., Flakus, H.T. and Boyd, R.J. (1986) An ab initio SCF calculation of the effect of water-anion and water-cation interactions on the vibrational frequencies of water. Spectrochimica Acta, A42 175180.CrossRefGoogle Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2008) Crystallography of modular materials. 370 pp. International Union of Crystallography Monographs on Crystallography, 15. Oxford Science Publications, UK.Google Scholar
Fitzpatrick, R.W. and Self, P.G. (1997) Iron oxyhydroxides, sulfides and oxyhydroxysulfates as indicators of acid sulphate surface weathering environment. Pp. 227240. in: Soil Processes from Mineral to Landscape Scale (Auerswald, K., Stanjek, H. and Bigham, J.M., editors). Advances in GeoEcology, 30. Catena Verlag, Reiskirchen, Germany.Google Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112. in: Sulfate Minerals Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, B.K., editors). Reviews in Mineralogy and Geochemistry, 40. Mineralogical Society of America and Geochemical Society, Washington, D.C.Google Scholar
Knittle, E., Phillips, W. and Williams, Q. (2001) An infrared and Raman spectroscopic study of gypsum at high pressures. Physics and Chemistry of Minerals, 28, 630640.CrossRefGoogle Scholar
Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. American Mineralogist, 92, 118.CrossRefGoogle Scholar
Lane, M.D., Dyar, M.D. and Bishop, J.L. (2004) Spectroscopic evidence for hydrous iron sulfate in the martian soil. Geophysical Research Letters, 31, doi:10.1029/2004GL021231CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H_O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Libowitzky, E. and Rossman, G.R. (1996) Principles of quantitative absorbance measurements in anisotropic crystals. Physics and Chemistry of Minerals, 23, 319327.CrossRefGoogle Scholar
Merlino, S. (2009) OD approach to polytypism: examples, problems, indications. Zeitschrift für Kristallographie, 224 251260.CrossRefGoogle Scholar
Moore, P.B. (1970) Structural hierarchies among minerals containing octahedrally coordinating oxygen: I. Stereoisomerism among corner-sharing octahedral and tetrahedral chains. Neues Jahrbuch für Mineralogie, Monatshefte, 163173.Google Scholar
Nakamoto, K. (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edition. Wiley and Sons, New York.Google Scholar
Omori, K. (1970) Infrared study of sulfohalite. American Mineralogist, 55, 18971910.Google Scholar
Omori, K. and Kerr, P.F. (1963) Infrared study of saline sulfate minerals. Geological Society of America Bulletin, 74, 709734.CrossRefGoogle Scholar
Palache, C., Berman, H. and Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837–1892, Vol. 2, 7th edition, John Wiley and Sons, New York.Google Scholar
Putnis, A., Winkler, B. and Fernandez-Diaz, L. (1990) In situ IR spectroscopic and thermogravimetric study of the dehydration of gypsum. Mineralogical Magazine, 54, 123128.CrossRefGoogle Scholar
Ross, S.D. (1974) Sulphates and other oxy-anions of group VI. Pp. 423444. in: The Infrared Spectra of Minerals (V.C. Farmer, editor). Mineralogical Society, London.CrossRefGoogle Scholar
Ryskin, Y.I. (1974) The vibration of protons in minerals: hydroxyl, water and ammonium. Pp. 137181. in: The Infrared Spectra of Minerals (V.C. Farmer, editor). The Mineralogical Society, London.CrossRefGoogle Scholar
Scordari, F. and Ventruti, G. (2009) Sideronatrite, Na2Fe(SO4)2(OH)·3H2O: Crystal structure of the orthorhombic polytype and OD character analysis. American Mineralogist, 94, 16791686.CrossRefGoogle Scholar
Ventruti, G., Scordari, F., Della Ventura, G., Bellatreccia, F., Gualtieri, A.F. and Lausi, A. (2013) The thermal stability of sideronatrite and its decomposition products in the system Na2O-Fe2O3- SO2-H2O. Physics and Chemistry of Minerals,, DOI: 10.1007/s00269-013-0601-9.CrossRefGoogle Scholar