Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-11T12:19:34.755Z Has data issue: false hasContentIssue false

Magmatic and post-magmatic Y-REE-Th phosphate, silicate and Nb-Ta-Y-REE oxide minerals in A-type metagranite: an example from the Turčok massif, the Western Carpathians, Slovakia

Published online by Cambridge University Press:  05 July 2018

P. Uher
Affiliation:
Department of Mineral Deposits, Comenius University, Mlynská dolina G, Bratislava 84215, Slovakia
M. Ondrejka*
Affiliation:
Department of Mineralogy and Petrology, Comenius University, Mlynská dolina G, Bratislava 84215, Slovakia
P. Konečný
Affiliation:
Geological Survey of Slovak Republic, Mlynská dolina 1, 817 04 Bratislava, Slovakia

Abstract

An electron microprobe study of Y-REE-Th phosphate, silicate and Nb-Ta-Y-REE accessory-mineral assemblages revealed the compositional variations and evolution in post-orogenic, hypersolvus Permian A-type metagranite from Turčok, in the Gemeric Unit, of the Western Carpathians, eastern Slovakia. Prismatic zircon I and allanite-(Ce) are primary magmatic phases. However, the late-magmatic to early-subsolidus processes led to the formation of a more complex younger assemblage: bipyramidal zircon II, xenotime-(Y), thorite, gadolinite-hingganite-(Y), Nb-Ta-Y-REE oxide phases [fergusonite-(beta)/ samarskite-(Y), aeschynite/polycrase-(Y), and Nb-rich rutile?] and possibly monazite-(Ce). However, monazite-(Ce) and the partial alteration of allanite-(Ce), xenotime-(Y) and the Nb-Ta-Y-REE minerals are probably connected with a younger Alpine metamorphic overprint of the granite. Thorite appears as a solid solution in the thorite-xenotime-zircon series; it is also enriched in Al. Fergusonite-(beta)/ samarskite-(Y) and especially aeschynite/polycrase-(Y) show increased P, Si and Al contents.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abonyi, A. and Abonyiova, M. (1962) Geological setting of Carboniferous between Turčok and Ochtina with respect to magnesite deposits. Geologicke Prdce Zprdvy, 24, 7195. (in Slovak).Google Scholar
Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Giere, R., Heuss-Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y. and Pasero, M. (2006) Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 18, 551567.CrossRefGoogle Scholar
Bajanik, S., Ivanicka, L, Mello, I, Reichwalder, P., Pristas, L., Snopko, L., Vozar, J. and Vozarova, A. (1984) Geological map of the Slovenske Rudohorie Mountains. Eastern part. 1:50000. Dionyz Stiir Institute of Geology, Bratislava, Slovakia.Google Scholar
Bea, F. (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Journal of Petrology, 37, 521552.CrossRefGoogle Scholar
Broska, I., Williams, C.T., Janak, M. and Nagy, G. (2005) Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos, 82, 7183.CrossRefGoogle Scholar
Demartin, F., Pilati, T., Diella, V., Gentile, P. and Gramaccioli, CM. (1993) A crystal-chemical in-vestigation of Alpine gadolinite. The Canadian Mineralogist, 30, 127136.Google Scholar
Demartin, F., Minaglia, A. and Gramaccioli, CM. (2001) Characterization of gadolinite-group minerals using crystallographic data only: the case of hingganite-(Y) from Cuasso al Monte, Italy. The Canadian Mineralogist, 39, 11051114.CrossRefGoogle Scholar
Ercit, T.S. (2005) Identification and alteration trends of granitic-pegmatite-hosted (Y,REE,U,Th) — (Nb,Ta,Ti) oxide minerals: a statistical approach. The Canadian Mineralogist, 43, 12911303.CrossRefGoogle Scholar
Finger, F., Broska, I., Roberts, M.P. and Schermaier, A. (1998) Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. American Mineralogist, 83, 248258.CrossRefGoogle Scholar
Forster, H.-J. (1998a) The chemical composition of REE-Y-Th-U-rich accessory minerals in peralumi-nous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part I: The monazite-(Ce)-brabantite solid solution series. American Mineralogist, 83, 259272.CrossRefGoogle Scholar
Forster, H.-J. (1998b) The chemical composition of REE-Y-Th-U-rich accessory minerals in peralumi-nous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part II: Xenotime. American Mineralogist, 83, 13021315.CrossRefGoogle Scholar
Forster, H.-J. (2006) Composition and origin of intermediate solid solutions in the system thorite-xenotime-zircon-coffmite. Lithos, 88, 3555.CrossRefGoogle Scholar
Gratz, R. and Heinrich, W. (1997) Monazite-xenotime thermobarometry: Experimental calibration of the miscibility gap in the binary system CePO4—YPO4 . American Mineralogist, 82, 772780.CrossRefGoogle Scholar
Heinrich, W., Andrehs, G. and Franz, G. (1997) Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. Journal of Metamorphic Geology, 15, 316.CrossRefGoogle Scholar
Hrasko, L'. (2002) The dark enclaves in Turčok A-type granite. Geologica Carpathica, 53, Special Issue, Proceedings of the XVII. Congress of Carpathian-Balkan Geological Association, Bratislava, September 1-4, 2002 and Guide to Geological excursions. CD electronic version.Google Scholar
Johan, Z. and Johan, V. (2005) Accessory minerals of the Cinovec (Zinnwald) granite cupola, Czech Republic: indicators of petrogenetic evolution. Mineralogy and Petrology, 83, 113150.CrossRefGoogle Scholar
Kozlowski, A. and Dziezanowski, P. (2007) Gadolinite from the Michalowice quarry, Karkonosze massif, SW Poland. Mineralogia Polonica — Special Papers, 31, 185188.Google Scholar
Krenn, E. and Finger, F. (2007) Formation of monazite and rhabdophane at the expense of allanite during low temperature retrogression of metapelitic basement rocks from Crete, Greece: Microprobe data and geochronological implications. Lithos, 95, 130147.CrossRefGoogle Scholar
MaheF, M. (1951) Geological setting of the Zeleznik area with respect to the iron ore deposits. Unpublished manuscript, Geological Survey of Slovakia archive, Bratislava, (in Slovak).Google Scholar
Miyawaki, R., Matsubara, S., Yokoyama, K. and Okamoto, A. (2007) Hingganite-(Ce) and hingga-nite-(Y) from Tahara, Hirukawa-mura, Gifu Prefecture, Japan: The description on a new mineral species of the Ce-analogue of hingganite-(Y) with a refinement of the crystal structure of hingganite-(Y). Journal of Mineralogical and Petrological Sciences, 102, 17.CrossRefGoogle Scholar
Nagy, G., Draganits, E., Demeny, A., Panto, G. and Arkai, P. (2002) Genesis and transformation of monazite, florencite and rhabdophane during med-ium grade metamorphism: examples from the Sopron Hills, Eastern Alps. Chemical Geology, 191, 2546.CrossRefGoogle Scholar
Petrik, I., Broska, I., Lipka, J. and Siman, P. (1995) Granitoid allanite-(Ce): substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia). Geologica Carpathica, 46, 7994.Google Scholar
Pezzotta, F., Diella, V. and Guastoni, A. (1999) Chemical and paragenetic data on gadolinite-group minerals from Baveno and Cuasso al Monte, southern Alps, Italy. American Mineralogist, 84, 782789.CrossRefGoogle Scholar
Plasienka, D., Grecula, P., Putis, M., Kovac, M. and Hovorka, D. (1997) Evolution and structure of the Western Carpathians: an overview. Pp. 1—24 in: Geological evolution of the Western Carpathians (Grecula, P., Hovorka, D., and Putis, M., editors), Mineralia Slovaca — Monograph, Bratislava, Slovakia.Google Scholar
Plasienka, D., Janak, M., Luptak, B., Milovsky, R. and Frey, M. (1999) Kinematics and metamorphism of a Cretaceous core complex: the Veporic Unit of the Western Carpathians. Physics and Chemistry of Earth (A), 24, 651658.CrossRefGoogle Scholar
Pointer, CM., Ashworth, J.R. and Ixer, R.A. (1988a) The zircon-thorite mineral group in metasomatized granite, Ririwai, Nigeria 1. Geochemistry and metastable solid solution of thorite and coffmite. Mineralogy and Petrology, 38, 245262.CrossRefGoogle Scholar
Pointer, CM., Ashworth, J.R. and Ixer, R.A. (1988b) The zircon-thorite mineral group in metasomatized granite, Ririwai, Nigeria 2. Zoning, alteration and exsolution in zircon. Mineralogy and Petrology, 39, 2137.CrossRefGoogle Scholar
Poitrasson, F., Hanchar, J.M. and Schaltegger, U. (2002) The current state and future of accessory mineral research. Chemical Geology, 191, 324.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” c|>(pZ) procedure for improved quantitative microanalysis. Pp. 104 — 106 in: Microbeam Analysis (Armstrong, J. T., editor). San Francisco Press, San Francisco, California. USA.Google Scholar
Pupin, J.-P. (1980) Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207220.CrossRefGoogle Scholar
Pupin, J.-P. (1992) Les zircons des granites oceaniques et continentaux: couplage typologie-geochimie des elements en traces. Bulletin de la Societe Geologique de France, 163, 495507.Google Scholar
Pyle, J.M., Spear, F.S., Rudnick, R.L. and McDonough, W.F. (2001) Monazite—xenotime—garnet equilibria in metapelites and a new monazite—garnet thermometer. Journal of Petrology, 42, 20832107.CrossRefGoogle Scholar
Tischendorf, G., Forster, H.-J., Gottesmann, B. and Rieder, M. (2007) True and brittle micas: composi-tion and solid-solution series. Mineralogical Magazine, 71, 285320.CrossRefGoogle Scholar
Uher, P. and Broska, I. (1996) Post-orogenic Permian granitic rocks in the Western Carpathian-Pannonian area: geochemistry, mineralogy and evolution. Geologica Carpathica, 47, 311321.Google Scholar
Uher, P. and Gregor, T. (1992) The Turčok granite: product of post-orogenic A-type magmatism. Mineralia Slovaca, 24, 301304. (in Slovak).Google Scholar
Wang, R.-C, Zhao, G.-T., Wang, D.-Z., Lu, J.-J. and Xu, S.-J. (2000) Differentiation and accumulation of fluids in A-type granites: Evidence from accessory mineral study. Chinese Science Bulletin, 45, 16091613.CrossRefGoogle Scholar
Wang, R.-C, Wang, D.-Z., Zhao, G.-T., Lu, J.-J., Chen, X.-M. and Xu, S.-J. (2001) Accessory mineral record of magma-fluid interaction in the Laoshan I- and A-type granitic complex, Eastern China. Physics and Chemistry of Earth (A), 26, 835849.CrossRefGoogle Scholar
Wark, D.A. and Miller, C.F. (1993) Accessory mineral behaviour during differentiation of a granite suite: monazite, xenotime and zircon in the Sweetwater Wash pluton, southeastern California, U.S.A. Chemical Geology, 110, 4967.CrossRefGoogle Scholar
Whalen, J.B., Currie, L.C. and Chappell, B.W. (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407419.CrossRefGoogle Scholar