Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-07T08:01:40.720Z Has data issue: false hasContentIssue false

Nafeasite, NaFe3+(AsO3OH)2⋅H2O, a new framework arsenate from the Torrecillas mine, Iquique Province, Chile

Published online by Cambridge University Press:  17 June 2022

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Jochen Schlüter
Affiliation:
Mineralogisches Museum Hamburg, Leibniz-Institut zur Analyse des Biodiversitätswandels, Grindelallee 48, 20146 Hamburg, Germany
Thomas Malcherek
Affiliation:
Mineralogisch-Petrographisches Institut, University of Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
Bianca Paulenz
Affiliation:
Mineralogisch-Petrographisches Institut, University of Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
Dieter Pohl
Affiliation:
Mineralogisch-Petrographisches Institut, University of Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
Chi Ma
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
Maurizio Dini
Affiliation:
Central University of Chile, La Serena, Chile
Arturo A. Molina Donoso
Affiliation:
Chilean Minerals, Iquique, Chile
*
*Author for correspondence: Anthony R. Kampf, Email: akampf@nhm.org

Abstract

The new mineral nafeasite (IMA2021-103), NaFe3+(AsO3OH)2⋅H2O, was found at the Torrecillas mine, Iquique Province, Chile, where it is a secondary alteration phase associated with anhydrite, gypsum, halite, lavendulan, magnesiokoritnigite and natrojarosite. Nafeasite occurs in tightly intergrown aggregates of equant crystals. Crystals are light to medium pink and transparent, with vitreous lustre and white streak. The Mohs hardness is ~2½. The density is 3.23(2) g⋅cm–3. Optically, nafeasite is biaxial (+), with α = 1.679(3), β = 1.682(3), γ = 1.730(5) (white light); 2V = 27(2)°; and slight r < v dispersion. The empirical formulae of the holotype and cotype (based on 9 O atoms per formula unit) are Na0.98K0.02Fe0.92Al0.07As2.00O9H4.01 and Na0.97Fe0.68Al0.33As2.00O9H4.01, respectively. Nafeasite is monoclinic, space group C2, with cell parameters: a = 18.6876(16), b = 8.6769(7), c = 14.8100(10) Å, β = 105.238 (5)°, V = 2317.0(3) Å3 and Z = 12. The structure, refined to R1 = 5.03% for 5979 Io > 2σI reflections, is based on a loose 3D framework of alternating AsO3OH tetrahedra and Fe3+O6 octahedra.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Juraj Majzlan

References

Buchelt, M. and Tellez, C. (1988) The Jurassic La Negra Formation in the area of Antofagasta, north Chile (lithology, petrography, geochemistry). Pp 171182 in: The Southern Central Andes (Bahlburg, H, Breitkreuz, C and Giese, P, editors). Lecture Notes in Earth Sciences 17. Springer, Berlin-Heidelberg-New York,.Google Scholar
Cameron, E.M., Leybourne, M.I. and Palacios, C. (2007) Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineralium Deposita, 42, 205218.10.1007/s00126-006-0108-0CrossRefGoogle Scholar
D'Yvoire, F. and Screpel, M. (1974) Sur les arseniates doubles d'un metal trivalent et de sodium. II. Donnees cristallographiques sur les composes NaXMIIIH3-X(AsO4)2,1 a 1,5 H2O (0,6<x<2) et NaMIIIAs2O7, avec MIII=Al,Fe. Bulletin de la Société Chimique de France, 1974, 12111214.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O⋅⋅⋅O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
García, F. (1967) Geologia del Norte Grande de Chile. Simposio Geosinclinal Andino, Sociedad Geológica de Chile Publicaciones, 3, 138 pp.Google Scholar
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C. and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. The Microscope, 52, 2339.Google Scholar
Gutiérrez, H. (1975) Informe Sobre una Rápida Visita a la Mina de Arsénico Nativo, Torrecillas. Instituto de Investigaciones Geológicas, Iquique, Chile.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2019a) Camanchacaite, chinchorroite, espadaite, magnesiofluckite, picaite and ríosecoite: six new hydrogen-arsenate minerals from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 83, 655671.10.1180/mgm.2019.28CrossRefGoogle Scholar
Kampf, A.R., Chukanov, N.V., Möhn, G., Dini, M., Molina Donoso, A.A. and Friis, Henrik (2019b) Cuatrocapaite-(NH4) and cuatrocapaite-(K), two new minerals from the Torrecillas mine, Iquique Province, Chile, related to lucabindiite and gajardoite. Mineralogical Magazine, 83, 741748.CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P. and Molina Donoso, A.A. (2020) Mauriziodiniite, NH4(As2O3)2I, the ammonium and iodine analogue of lucabindiite from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 84, 267273.CrossRefGoogle Scholar
Kampf, A.R., Schlüter, J., Malcherek, T., Paulenz, B., Pohl, D., Ma, C., Dini, M. and Molina Donoso, A.A. (2022) Nafeasite, IMA 2021-103. CNMNC Newsletter 66. Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.33.Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.10.1007/BF03354882CrossRefGoogle Scholar
Majzlan, J., Drahota, P. and Filippi, M. (2014) Parageneses and crystal chemistry of arsenic minerals. Pp.17184 in: Arsenic: Environmental Geochemistry, Mineralogy, and Microbiology (Bowell, Robert J., Alpers, Charles N., Jamieson, Heather E., Nordstrom, D. Kirk and Majzlan, Juraj, editors). Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.10.1515/9781614517979.17CrossRefGoogle Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.10.2113/gscanmin.45.5.1307CrossRefGoogle Scholar
Palatinus, L. and Chapuis, G. (2007) SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786790.10.1107/S0021889807029238CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345352.CrossRefGoogle Scholar
Schreurs, A.M.M., Xian, X. and Kroon-Batenburg, L.M.J. (2010) EVAL15: a diffraction data integration method based on ab initio predicted profiles. Journal of Applied Crystallography, 43, 7082.10.1107/S0021889809043234CrossRefGoogle Scholar
Sheldrick, G.M. (2008) Sadabs, v. 2008/1. Program for empirical absorption correction of area detector data. University of Göttingen, Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2015) Crystal Structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material

Download Kampf et al. supplementary material(File)
File 1.5 MB