Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-30T11:03:07.339Z Has data issue: false hasContentIssue false

Phase transitions during compression of thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O: A high-pressure synchrotron powder X-ray diffraction study

Published online by Cambridge University Press:  05 July 2018

M. Ardit*
Affiliation:
Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, I-44122 Ferrara, Italy
G. Cruciani
Affiliation:
Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, I-44122 Ferrara, Italy
M. Dondi
Affiliation:
Institute of Science and Technology for Ceramics (ISTEC - CNR), via Granarolo 64, I-48018 Faenza, Italy
G. L. Garbarino
Affiliation:
European Synchrotron Radiation Facility (ESRF), BP 220, 6 rue Jules Horowitz, F-38043 Grenoble Cedex, France
F. Nestola
Affiliation:
Department of Geosciences, University of Padova, via Gradenigo 6, I-35131 Padova, Italy
*
* E-mail: rdtmtt@unife.it

Abstract

The high-pressure behaviour of the thaumasite structure was investigated using synchrotron powder X-ray diffraction, up to 19.5 GPa. Based on Rietveld refinements, thaumasite retained the roompressure P63 space group throughout the whole investigated pressure range while the pressure dependence of the refined unit-cell parameters can be cast into three different compression regimes, each corresponding to a different thaumasite phase (th-I, th-II and th-III) related by isosymmetric phase transitions. In particular, the phase transition in the 7.40–15.02 GPa P-range (i.e. from th-II to th-III) is associated with an inversion of the axial bulk moduli which, by analogy with ettringite, can be rationalized as due to a change in the relative strengths of the iono-covalent bonds along the [Ca3Si(OH)6(H2O)12]4+ columns parallel to the c axis vs. the O–H bonds linking the columns within the ab plane. The linear inverse relationship between the low- and high-temperature data from the literature with those collected under high-pressure conditions reveals that the same bonding regime governs the anisotropic expansion and contraction of thaumasite up to ~1.4 GPa and 400 K (HP-HT stability limits of th-I phase).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, R.J., (1996) New phenomena in minerals at high pressures. Phase Transitions, 59, 105119.CrossRefGoogle Scholar
Angel, R.J., (2000a) Equations of State. Pp. 3559 in: High-temperature and High-pressure Crystal Chemistry (R.M. Hazen and R.T. Downs, editors). Reviews in Mineralogy and Geochemistry, 41. Mineralogical Society of America and The Geochemical Society, Washington DC, USA.Google Scholar
Angel, R.J., (2000b) High-pressure structural phase transitions. Pp. 85104 in: Transformation Processes in Minerals (S.A.T. Redfern and M.A. Carpenter, editors). Reviews in Mineralogy and Geochemistry, 39. Mineralogical Society of America, Washington DC, USA.Google Scholar
Angel, R.J., (2011) EOS-Fit V5.2. Department of Geosciences, University of Padova, Italy.Google Scholar
Barnett, S.J., Adam, C.D., and Jackson, A.R.W. (2000) Solid solutions between ettringite, Ca6Al2(SO4)3 (OH)12·26H2O, and thaumasite Ca3Si(OH)6(CO3) (SO4)·12H2O. Journal of Material Science, 35, 41094114.CrossRefGoogle Scholar
Bensted, J. (1999) Thaumasite – background and nature in deterioration of cements, mortars and concretes. Cement and Concrete Composites, 21, 117121.CrossRefGoogle Scholar
Bickley, J.A., (1999) The repair of Arctic structures damaged by thaumasite. Cement and Concrete Composites, 21, 155158.CrossRefGoogle Scholar
Birch, F. (1947) Finite elastic strain of cubic crystals. Physical Review, 71, 809824.CrossRefGoogle Scholar
Building Research Establishment (2005) Concrete in aggressive ground (Special Digest 1). IHS BRE press, Watford, UK, 68 pp.Google Scholar
Clark, S.M., Colas, B., Kunz, M., Speziale, S. and Monteiro, P.J.M. (2008) Effect of pressure on the crystal structure of ettringite. Cement and Concrete Research, 38, 1926.CrossRefGoogle Scholar
Crammond, N.J., (1985) Thaumasite in failed cement mortars and renders from exposed brickwork. Cement Concrete Research, 15, 10391050.CrossRefGoogle Scholar
Edge, R.A., and Taylor, F.W., (1971) Crystal structure of thaumasite, [Ca3Si(OH)6·12H2O](SO4)(CO3). Acta Crystallographica, B27, 594601.CrossRefGoogle Scholar
Effenberger, H., Kirfel, A., Will, G. and Zobetz, E. (1983) A further refinement of the crystal structure of thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O. Neues Jahrbuch für Mineralogie Monatshefte, 2, 6068.Google Scholar
Fu, Y., Song, Y., and Huang, Y. (2012) An investigation of the behavior of completely siliceous zeolite ZSM- 5 under high external pressures. Journal of Physical Chemistry, C116, 20802089.Google Scholar
Gatta, G.D., McIntyre, G.J., Swanson, J.G., and Jacobsen, S.D., (2012) Minerals in cement chemistry: A single-crystal neutron diffraction and Raman spectroscopic study of thaumasite, Ca3Si(OH)6 (CO3)(SO4)·12H2O. American Mineralogist, 97, 10601069.CrossRefGoogle Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 180.Google Scholar
Haines, J., Léger, J.M., and Schulte, O. (1998) Highpressure isosymmetric phase transition in orthorhombic lead fluoride. Physical Review, B57, 75517555.CrossRefGoogle Scholar
Hammersley, A., Svensson, S., Hanfland, M., Fitch, A., and Hausermann, D. (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Research, 14, 235248.CrossRefGoogle Scholar
Hazen, R.M., and Finger, L.W., (1984) Comparative Crystal Chemistry. J. Wiley & Sons, New York, USA, 231 pp.Google Scholar
Hobbs, D.W., and Taylor, M.G., (2000) Nature of the thaumasite sulphate attack mechanism in field concrete. Cement and Concrete Research, 30, 529533.CrossRefGoogle Scholar
Jacobsen, S.D., Smyth, J.R., and Swope, R.J., (2003) Thermal expansion of hydrated six-coordinate silicon in thaumasite, Ca3Si(OH)6(CO3)(SO4) ·12H2O. Physics and Chemistry of Minerals, 30, 321329.CrossRefGoogle Scholar
Knill, D.C., and Young, B.R., (1960) Thaumasite from Co. Down, Northern Ireland. Mineralogical Magazine, 32, 416418.CrossRefGoogle Scholar
Larson, A.C., and Von Dreele, R.B., (1988) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report No. LAUR 86748. Los Alamos National Laboratory, New Mexico, USA.Google Scholar
Manzano, H., Ayuela, A., Telesca, A., Monteiro, P.J.M. and Dolado, J.S., (2012) Ettringite strengthening at high pressures induced by the densification of the hydrogen bond network. Journal of Physical Chemistry, C116, 1613816143.Google Scholar
Mao, H.K., Xu, J. and Bell, P.M., (1986) Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. Journal of Geophysical Research – Solid Earth, 91, 46734676.CrossRefGoogle Scholar
Martucci, A. and Cruciani, G. (2006) In situ time resolved synchrotron powder diffraction study of thaumasite. Physics and Chemistry of Minerals, 33, 723731.CrossRefGoogle Scholar
Merlini, M., Hanfland, M., Gemmi, M., Huotari, S., Simonelli, L. and Strobel, P. (2010) Fe3+ spin transition in CaFe2O4 at high pressure. American Mineralogist, 95, 200203.CrossRefGoogle Scholar
Mezouar, M., Crichton, W.A., Bauchau, S., Thurel, F., Witsch, H., Torrecillas, F., Blattmann, G., Marion, P., Dabin, Y., Chavanne, J., Hignette, O., Morawe, C. and Borel, C. (2005) Development of a new stateof- the-art beamline optimized for monochromatic single-crystal and powder X-ray diffraction under extreme conditions at the ESRF. Journal of Synchrotron Radiation, 12, 659664.CrossRefGoogle Scholar
Miyake, A., Shimobayashi, N. and Kitamura, M. (2004) Isosymmetric structural phase transition of orthoenstatite: Molecular dynamics simulation. American Mineralogist, 89, 16671672.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nestola, F., Boffa Ballaran, T., Benna, P., Tribaudino, M. and Bruno, E. (2004) High-pressure phase transitions in Ca0.2Sr0.8Al2Si2O8 feldspar. American Mineralogist, 89, 14741479.CrossRefGoogle Scholar
Ohi, S., Miyake, A., Shimobayashi, N., Yashima, M. and Kitamura, M. (2008) An isosymmetric phase transition of orthopyroxene found by high-temperature X-ray diffraction. American Mineralogist, 93, 16821685.CrossRefGoogle Scholar
Santhanam, M., Cohen, M.D., and Olek, J. (2001) Sulphate attack research–whither now? Cement and Concrete Research, 31, 845851.CrossRefGoogle Scholar
Sato, T., Funamori, N. and Yagi, T. (2011) Helium penetrates into silica glass and reduces its compressibility. Nature Communications, DOI:10.1038/ ncomms1343.CrossRefGoogle Scholar
Sato, T., Takada, H., Yagi, T., Gotou, H., Okada, T., Wakabayashi, D. and Funamori, N. (2013) Anomalous behavior of cristobalite in helium under high pressure. Physics and Chemistry of Minerals, 40, 310.CrossRefGoogle Scholar
Shen, G., Mei, Q., Prakapenka, V.B., Lazor, P., Sinogeikin, S., Meng, Y. and Park, C. (2011) Effect of helium on structure and compression behavior of SiO2 glass. Proceedings of the National Academy of Sciences USA, 108, 60046007.CrossRefGoogle ScholarPubMed
Speziale, S., Jiang, F., Mao, Z., Monteiro, P.J.M., Wenk, H.-R., Duffy, T.S., and Schilling, F.R., (2008) Singlecrystal elastic constants of natural ettringite. Cement and Concrete Research, 38, 885889.CrossRefGoogle Scholar
Syassen, K. (2008) DatLab. Max Planck Institute, Stuttgart, Germany.Google Scholar
Toby, H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210213.CrossRefGoogle Scholar
Wunder, B., Jahn, S., Koch-Müller, M. and Speziale, S. (2012) The 3.65 Å phase, MgSi(OH)6: Structural insights from DFT-calculations and T-dependent IR spectroscopy. American Mineralogist, 97, 10431048.CrossRefGoogle Scholar
Yang, H., Prewitt, C.T., and Frost, D.J., (1997) Crystal structure of the dense hydrous magnesium silicate, phase D. American Mineralogist, 82, 651654.CrossRefGoogle Scholar
Zemann, J. and Zobetz, E. (1981) Do the carbonate groups in thaumasite have anomalously large deviations from coplanarity? Kristallografija, 26, 12151217.Google Scholar