Hostname: page-component-6d856f89d9-26vmc Total loading time: 0 Render date: 2024-07-16T07:37:55.287Z Has data issue: false hasContentIssue false

Post-recrystallisation mobilisation phenomena in metamorphosed stratabound sulphide ores

Published online by Cambridge University Press:  05 July 2018

F. M. Vokes
Affiliation:
University of Trondheim, Norwegian Institute of Technology, H6gskoleringen 6, N-7034 Trondheim-NTH, Norway
J. R. Craig
Affiliation:
Virginia Polytechnic Institute and State University, Department of Geological Sciences, Blacksburg, VA 24061, U.S.A.

Abstract

Metamorphosed stratabound iron- and base-metal sulphide deposits often exhibit microtextures in which fractures in cataclastically-deformed pyrite porphyroblasts are filled with matrix sulphides; chalcopyrite, sphalerite, pyrrhotite or galena. Discussions of such textures have mostly centred on whether solid-phase or fluid-phase mechanisms were responsible for the movement of the matrix sulphides.

The small Zn-Cu sulphide body at Gressli, in the central Norwegian Caledonides, shows these textural features to an extreme degree. Both chalcopyrite and sphalerite show heavy replacive relations to the cataclastically deformed metablastic pyrite, along fracture walls and grain boundaries. They also occur injected along the opened-up triple junctions of foam-textured pyrite. In addition, parts of the ore show patchy quartz with clear replacive relationship to all three sulphides, a feature not often reported from such ores. Such textures can be interpreted to support a mobilisation sequence chalcopyrite-sphalerite-quartz within the Gressli ore. Their extent and degree of development indicate that fluid-phase mobilisation of the three minerals must have played a dominant role. Chalcopyrite and sphalerite are most likely derived from within the ore-mass itself; an external source for the SiO2 seems most probable, in the form of metahydrothermal solutions moving along retrograde shear zones at or near ore-walls.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amstutz, G. C. (1969) Remobilisation—facts and fancy. In Remobilisation of ores and minerals (Valera, R., ed.) Assoz. Minerar. Sarda—Inst. Giacim. Minerar. Univ. Cagliari, 7-17.Google Scholar
Barton, P. B. (1978) Some ore textures involving sphalcritc from the Furutobe mine, Akita Prefecture, Japan. Mining Geology, 28, 293300.Google Scholar
Barton, P. B. and Bethke, P. M. (1987) Chalcopyrite disease in sphalerite: Pathology and epidemiology. Am. Mineral. 72, 451–67.Google Scholar
Craig, J. R. and Vokes, F. M. (1992) Ore mineralogy of the Appalachian-Caledonian statabound sulfide deposits. Ore Geol. Rev. 7, 77123.Google Scholar
Cox, S. F. (1987) Flow mechanisms in sulphide min-erals. In Mechanical and chemical (re)mobilisation of metalliferous mineralisation (Marshall, B. and Gilligan, L. B., eds.) Ore Geol. Rev. 2, 133–72.Google Scholar
Cox, S. F. Etheridge, M. A., and Wall, V. J. (1987) The role of fluids in syntectonic mass transport, and the localisation of metamorphic vein-type deposits. Ibid., 2, 65-86.Google Scholar
Cox, S. F. Wall, V. J., Etheridge, M. A., and Potter, T. F., (1991) Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits—examples from the Lachlan Fold Belt in central Victoria, Australia. In Ores and Metamorphism (Vokes, F. M., ed.). Ore Geol. Rev., 6, 391423.Google Scholar
Fyfe, W. S., Price, N. J., and Thompson, A. B. (1978) Fluids in the Earth's crust. Amsterdam, Elsevier, 383 PP.Google Scholar
Gilligan, L. B. and Marshall, B. (1987) Textural evidence for remobilisation in metamorphic environments. In Mechanical and chemical (re)mobilisation of metalliferous mineralisation (Marshall, B. and Gilligan, L. B., eds.) Ore Geol. Rev., 2, 205–30.Google Scholar
Grenne, T. (1988) Marginal basin type metavoleanites of the Hersjr Formation, eastern Trondheim District, Central Norwegian Caledonides. Norges geol. unders., Bull 412, 29-42.Google Scholar
Grenne, T. and Lagerbald, B. (1985) The Fundsjo Group, Central Norway, a lower Palaeozoic island arc sequence: geochemistry and regional implications. In The Caledonide Orogen—Scandinavia and related areas (Gee, D. G. and Sturt, B. A., eds.) J. Wiley & Sons, Chichester, 745-62.Google Scholar
Grenne, T. and Vokes, F. M. (1990) Sea-floor sulphides at the Høydal volcanogenic deposit, central Norwegian Caledonides. Econ. Geol. 85, 344–59.Google Scholar
Hobbs, B. E. (1987) Principles involved in mobilisation and remobilisation. In Mechanical and chemical (re)mobilisation of metalliferous mineralisation (Marshall, B. and Gilligan, L. B., eds.) Ore Geol. Rev. 2, 3746.Google Scholar
Marshall, B. and Gilligan, L. B. (1987) An introduction to remobilisation: Information from ore-body geometry and experimental considerations. Ibid., 2, 87-132.Google Scholar
Marshall, B. and Gilligan, L. B. (1989) Dnrchbewegung structure, piercement cusps, and piercement veins in massive sulfide deposits: formation and interpretation. Econ. Geol., 84, 2311–9.Google Scholar
McClay, K. R. (1991) Deformation of stratiform Zn-Pb (-barite) deposits in the northern Canadian Cordillera. In Ores and Metamorphism. Special Issue (Vokes, F. M., ed.) Ore Geol. Rev. 6, 435–62.Google Scholar
McDonald, J. A. (1967) Metamorphism and its effect on sulphide assemblages. Mineral. Deposita, 2, 200–20.Google Scholar
McQueen, K. G. (1987) Deformation and remobilisa-tion in some Western Australian nickel ores. In Mechanical and chemical (re)mobilisation of metalliferous mineralization (Marshall, B. and Gilligan, L. B., eds.) Ore Geol. Rev. 2, 269–86.Google Scholar
Mookherjee, A. (1976) Ores and metamorphism: temporal and genetic relationships. In Handbook of Strata-bound and stratiform ore deposits (Wolf, K. H., ed.). Amsterdam, Elsevier, vol 4, 203-60.Google Scholar
Natale, P. (1969) Recrystallisation and remobilisation in some stratiforms pyrite deposits of the Western Alps. In Remobilisation of ores and minerals (Valera, R., ed.) Assoz. Minerar. Sarda—Inst. Giacim. Minerar. Univ. Cagliari, 12948.Google Scholar
Olesen, N. Ø., Hansen, E. S., Kristensen, L. H., and Thyrsted, T. (1973) A preliminary account of the geology of the Selbu-Tydal area, the Trondheim Region, central Norwegian Caledonides. Leidse Geol. Meded., 49, 259–76.Google Scholar
Ramdohr, P. (1953) Ober Metamorphose und sekun-däire Mobilisierung. Geol. Rundsch. 42, 1119.Google Scholar
Saager, R. (1966) Erzgeologische Untersuchungen an Kaledonische Blei, Zink und Kupfetfiihrenden Kiesla-gerstiitten in Nord-Rana-District, Nord-Norwegen. Doctoral thesis, ETH Zürich. Ziirich, City-Druck AG, 143 pp.Google Scholar
Stanton, R. L. (1964) Mineral interfaces in stratiform ores. Trans. Inst. Mining Metall., 74, 4579.Google Scholar
Stanton, R. L. (1972) Ore Petrology. New York, McGraw-Hill, Inter. Ser. Earth Planet. Sci., 713 pp.Google Scholar
Vokes, F. M. (1963) Geological studies on the Caledonian pyritic zinc-lead orebody at Bleikvassli, Nordland, Norway. Norges geol unders., 22, 126 pp.Google Scholar
Vokes, F. M. (1969) A review of the metamorphism of sulphide deposits. Earth Sci. Rev. 5, 99143.Google Scholar
Vokes, F. M. (1971) Some aspects of the regional metamorphic mobilisation of pre-existing sulphide deposits. Mineral. Deposita, 6, 122–9.Google Scholar
Vokes, F. M. (1973) ‘Ball texture’ in sulphide ores. Geol. Fören. Stockh. Förhl., 95, 403-6.Google Scholar
Wilson, J. R. (1985) The synorogenic Fongen-Hyllingen layered basic complex, Trondheim Region, Norway. In The Caledonide orogen—Scandinavia and related areas (Gee, D. G. and Sturt, B. A., eds.). New York, John Wiley & Sons, 717-24.Google Scholar
Wilson, J. R. and Olesen, N. O. (1975) The form of the FongenHyllingen gabbro complcx, Trondheim Region, Norway. Norsk geol. tidsskr., 55, 423–39.Google Scholar
Wilson, J. R. Hansen, B. T., and Pedersen, S. (1983) Zircon U-Pb evidence for the age of the Fongen-Hyllingen complex, Trondheim Region, Norway. Geol. Fören. Stockh. Förh., 105, 6870.Google Scholar