Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T14:17:47.538Z Has data issue: false hasContentIssue false

Recommended nomenclature for the sapphirine and surinamite groups (sapphirine supergroup)

Published online by Cambridge University Press:  05 July 2018

E. S. Grew
Affiliation:
Department of Earth Sciences, University of Maine, 5790 Bryand Research Center, Orono, 04469-5790 Maine, USA
U. Hålenius
Affiliation:
Department of Mineralogy, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
M. Pasero
Affiliation:
Dipartimentodi Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
J. Barbier
Affiliation:
Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

Abstract

Minerals isostructural with sapphirine-1A, sapphirine-2M, and surinamite are closely related chain silicates that pose nomenclature problems because of the large number of sites and potential constituents, including several (Be, B, As, Sb) that are rare or absent in other chain silicates. Our recommended nomenclature for the sapphirine group (formerly aenigmatite group) makes extensive use of precedent, but applies the rules to all known natural compositions, with flexibility to allow for yet undiscovered compositions such as those reported in synthetic materials. These minerals are part of a polysomatic series composed of pyroxene or pyroxene-like and spinel modules, and thus we recommend that the sapphirine supergroup should encompass the polysomatic series. The first level in the classification is based on polysome, i.e. each group within the supergroup corresponds to a single polysome. At the second level, the sapphirine group is divided into subgroups according to the occupancy of the two largest M sites, namely, sapphirine (Mg), aenigmatite (Na), and rhönite (Ca). Classification at the third level is based on the occupancy of the smallest M site with most shared edges, M7, at which the dominant cation is most often Ti (aenigmatite, rhönite, makarochkinite), Fe3+ (wilkinsonite, dorrite, høgtuvaite) or Al (sapphirine, khmaralite); much less common is Cr (krinovite) and Sb (welshite). At the fourth level, the two most polymerized T sites are considered together, e.g. ordering of Be at these sites distinguishes høgtuvaite, makarochkinite and khmaralite. Classification at the fifth level is based on XMg = Mg/(Mg + Fe 2+) at the M sites (excluding the two largest and Ml). In principle, this criterion could be expanded to include other divalent cations at these sites, e.g. Mn. To date, most minerals have been found to be either Mg-dominant (XMg > 0.5), or Fe2+-dominant (XMg < 0.5), at these M sites. However, XMg ranges from 1.00 to 0.03 in material described as rhönite, i.e. there are two species present, one Mg-dominant, the other Fe2+-dominant. Three other potentially new species are a Mg-dominant analogue of wilkinsonite, rhönite in the Allende meteorite, which is distinguished from rhonite and dorrite in that Mg rather than Ti or Fe3+ is dominant at Ml, and an Al-dominant analogue of sapphirine, in which Al > Si at the two most polymerized T sites vs. Al < Si in sapphirine. Further splitting of the supergroup based on occupancies other than those specified above is not recommended.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, MJ. (1967) Aenigmatite from the groundmass of a peralkaline trachyte. American Mineralogist, 52, 18951901.Google Scholar
Aleksandrov, S.M. and Troneva, M.A. (2006) Composition, mineral assemblages and genesis of serendibite-bearing magnesian skarns. Geokhimiya, 2006(7), 722–738 (English translation: Geochemistry International, 44(7), 665680).Google Scholar
Alletti, M., Pompilio, M. and Rotolo, S.G. (2005) Mafic and ultramafic enclaves in Ustica Island lavas: Inferences on composition of lower crust and deep magmatic processes. Lithos, 84, 151—167.CrossRefGoogle Scholar
Arakcheeva, A.V. (1995) Crystal structure of the baykovite mineral. Crystallography Reports, 40, 220227.Google Scholar
Arakcheeva, A.V. and Ivanov, I.T. (1993) Crystal structure of disomatic phase of variable composition CaAl(Al,V,MI)2(V,MII)(Si,Al)2O10, where M1 = Mg, Mn = Al, Fe, Mn, Ti, Mg: its polytypic modifications and structural homologs. Kristallografiya, 38, 144161 (in Russian).Google Scholar
Arakcheeva, A.V., Karpinskii, O.G. Lyadova, V.Ya. (1991) Crystal structure of a CaFe3AlO7 aluminum—calcium ferrite of variable composition. Soviet Physics, Crystallography, 36, 332336.Google Scholar
Åsheim, A., Berge, S.A., and Larsen, A.O. (2008) Sporelementer i Eenigmatitt fra Larvik plutonkom-pleks. Norsk Bergverksmuseum, Shift, 38, 6365 (in Norwegian).Google Scholar
Avanzinelli, R., Bindi, L., Menchetti, S. and Conticelli, S. (2004) Crystallisation and genesis of peralkaline magmas from Pantelleria Volcano, Italy: an integrated petrological and crystal-chemical study. Lithos, 73, 4169.CrossRefGoogle Scholar
Baba, S., Grew, E.S., Shearer, C.K. and Sheraton, J.W. (2000) Surinamite: A high-temperature metamorphic beryllosilicate from Lewisian sapphirine-bearing kyanite-orthopyroxene-quartz-potassium feldspar gneiss at South Harris, N.W. Scotland. American Mineralogist, 85, 14741484.CrossRefGoogle Scholar
Bancroft, G.M., Burns, R.G. and Stone, AJ. (1968) Applications of the Mossbauer effect to silicate mineralogy—II. Iron silicates of unknown and complex crystal structures. Geochimica et Cosmochimica Ada, 32, 547559.CrossRefGoogle Scholar
Barbier, J. (1990) Mg4Ga8Ge2O20, a new synthetic analog of the mineral sapphirine. Physics and Chemistry of Minerals, 17, 246252.CrossRefGoogle Scholar
Barbier, J. (1995) Structure refinement of Na2(Mg,Fe)6[(Ge,Fe)6Oi8]O2, a new aenigmatite-analog. Zeitschrift fur Kristallographie, 210, 1923.Google Scholar
Barbier, J. (1996) Surinamite analogs in the MgO-Ga2O3-GeO2 and MgO-Al2O3-GeO2 systems. Physics and Chemistry of Minerals, 23, 151156.CrossRefGoogle Scholar
Barbier, J. (1998) Crystal structures of sapphirine and surinamite analogues in the MgO-Ga2O3-GeO2system. European Journal of Mineralogy, 10, 12831293.CrossRefGoogle Scholar
Barbier, J. and Hyde, B.G. (1988) Structure of sapphirine: its relation to the spinel, clinopyroxene and β-gallia structures. Ada Crystallographica, B44, 373377.Google Scholar
Barbier, I, Grew, E.S., Moore, P.B. and Su, S.C. (1999) Khmaralite, a new beryllium-bearing mineral related to sapphirine: A superstructure resulting from partial ordering of Be, Al and Si on tetrahedral sites. American Mineralogist, 84, 16501660.CrossRefGoogle Scholar
Barbier, J., Grew, E.S., Halenius, E., Halenius, U. and Yates, M.G. (2002) The role of Fe and cation order in the crystal chemistry of surinamite, (Mg,Fe2+)3(Al,Fe3+)3O[AlBeSi3O15]: A crystal structure, Mossbauer spectroscopic, and optical spectroscopic study. American Mineralogist, 87, 501513.CrossRefGoogle Scholar
Barker, D.S. and Hodges, F.N. (1977) Mineralogy of intrusions in the Diablo Plateau, northern Trans-Pecos magmatic province, Texas and New Mexico. Geologocal Society of America Bulletin, 88, 14281436.2.0.CO;2>CrossRefGoogle Scholar
Birkett, T.C., Trzcienski, W.E. Jr. and Stirling, J.A. (1996) Occurrence and compositions of some Ti-bearing minerals in the Strange Lake intrusive complex, Quebec—Labrador boundary. The Canadian Mineralogist, 34, 779801.Google Scholar
Bischoff, A., Geiger, T., Palme, H., Spettel, B., Schultz, L., Scherer, P., Schlüter, J. and Lkhamsuren, J. (1993) Mineralogy, chemistry, and noble gas contents of Adzhi-Bogdo—an LL3–6 chondritic breccia with L-chondritic and granitoidal clasts. Meteoritics, 28, 570578.CrossRefGoogle Scholar
Bøggild, O.B. (1953) The mineralogy of Greenland. Meddelelser om Gronland, 149(3), 442 pp.Google Scholar
Bohrson, W.A. and Reid, M.R. (1997) Genesis of silicic peralkaline volcanic rocks in an ocean island setting by crustal melting and open-system processes: Socorro Island, Mexico. Journal of Petrology, 38, 11371166.CrossRefGoogle Scholar
Boivin, P. (1980) Données expérimentales préliminaires sur la stabilité de la rhönite à 1 atmosphere. Application aux gisements naturels. Bulletin de Minéralogie, 103, 491502.CrossRefGoogle Scholar
Bonaccorsi, E., Merlino, S. and Pasero, M. (1989) The crystal structure of the meteoritic mineral krinovite, NaMg2CrSi3Oio. Zeitschrifi fur Kristallographie, 187, 133138.CrossRefGoogle Scholar
Bonaccorsi, E., Merlino, S., and Pasero, M. (1990) Rhönite: structural and micro structural features, crystal chemistry and polysomatic relationships. European Journal of Mineralogy, 2, 203—218.Google Scholar
Borley, G.D. (1976) Ænigmatite from an Eegirine—riebeckite granite, Liruei Complex, Nigeria. Mineralogical Magazine, 40, 595598.CrossRefGoogle Scholar
Breithaupt, A. (1865) Mineralogische Studien. 29. Kölbingit. Ainigmatit. Berg- und Huettenmcennische Zeitung, 24(47), 397398.Google Scholar
Brigida, C, Poli, S. and Valle, M. (2007) High-temperature phase relations and topological constraints in the quaternary system MgO-Al2o3-Sio2-Cr2O3: An experimental study. American Mineralogist, 92, 735747.CrossRefGoogle Scholar
Brögger, W.C. (1887) Forelöbig meddelelse om mineralerne på de sydnorske augit- og nefelinsye-niters grovkornige gange. Geologiska Foreningens i Stockholm Forhandlingar, 9, 247274 (in Danish).CrossRefGoogle Scholar
Brögger, W.C. (1890) Mineralien der siidnorweg. Augitsyenite. 50. Ainigmatit, Breithaupt (Kolbingit, Breithaupt). Zeitschrift für Krystallographie und Mineralogie, 16, 423433.Google Scholar
Brooks, C.K., Pedersen, A.K. and Rex, D.C. (1979) The petrology and age of alkaline mafic lavas from the nunatak zone of central East Greenland. Gronlands Geologiske Undersogelse Bulletin, 133, 28pp.Google Scholar
Bryan, W.B. (1969) Alkaline and peralkaline rocks of Socorro Island, Mexico. Year Book — Carnegie Institution of Washington, 68, 194200.Google Scholar
Bryan, W.B. and Stevens, N.C. (1973) Holocrystalline pantellerite from Mt. Ngun-Ngun, Glass House Mountains, Queensland, Australia. American Journal of Science, 273, 947957.CrossRefGoogle Scholar
Buerger, MJ. and Venkatakrishnan, V. (1974) Serendibite, a complicated, new, inorganic crystal structure. Proceedings of the National Academy of Sciences of the United States of America, 71, 43484351.CrossRefGoogle ScholarPubMed
Bulakh, A.G. (1997) Mineralogy of alkaline granites of Gremyakha Tundra on the Kola Peninsula. Vestnik Sankt-Peterburgskogo Universiteta, Seriya 7, Geologiya, Geografiya, 1997(3), 1828 (in Russian).Google Scholar
Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory, second edition, Cambridge University Press, Cambridge, UK, 551pp.CrossRefGoogle Scholar
Burns, R.G. and Solberg, T.C. (1990) 57Fe-bearing oxide, silicate, and aluminosilicate minerals. Crystal structure trends in Mossbauer spectra. Pp. 262283 in: (L.M. Coyne, S.W. McKeever, and Blake, D.F., editors). Spectroscopic Characterization of Minerals and their Surfaces, ACS Symposium Series 415, American Chemical Society, Washington, D.C. CrossRefGoogle Scholar
Burt, D.M. (1994) Vector representation of some mineral compositions in the aenigmatite group, with special reference to hogtuvaite. The Canadian Mineralogist, 32, 449457.Google Scholar
Burt, JB., Downs, R.T. and Costin, G. (2007) Single-crystal X-ray refinement of wilkinsonite, Na2Fe4 3+Fe2 3+Si6O20 . Ada Crystallographicn Section E, Structure Reports Online, 63, il22—il24.Google Scholar
Cameron, K.L., Carman, M.F. and Butler, J.C. (1970) Rhönite from Big Bend National Park, Texas. American Mineralogist, 55, 864874.Google Scholar
Cannillo, E., Mazzi, F., Fang, J.H., Robinson, P.D. and Ohya, Y. (1971) The crystal structure of aenigmatite. American Mineralogist, 36, 427446.Google Scholar
Carmichael, I.S. (1962) Pantelleritic liquids and their phenocrysts. Mineralogical Magazine, 33, 86113.CrossRefGoogle Scholar
Chesnokov, B.V., Vilisov, V.A, Bazhenova, L. F., Bushmakin, A.F. and Kotlyarov, V.A. (1993). New minerals from the burned dumps of the Chelyabinsk coal basin (fifth communication). Ural Mineralogical Collection, 2, 3—8 (in Russian).Google Scholar
Chesnokov, B.V., Vilisov, V.A, Bushmakin, A.F., Kotlyarov, V.A. and Belogub, V.A. (1994). New minerals from the burned dumps of the Chelyabinsk coal basin (sixth communication). Ural Mineralogical Collection, 3, 1519 (in Russian).Google Scholar
Choi, J.B. (1983) Mossbauer spectroscopy and crystal chemistry of aenigmatites. MS Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 59pp.Google Scholar
Choi, J.B. and Burns, R.G. (1983) Crystal chemistry of aenigmatite and related minerals: results from Mössbauer spectroscopy. Abstracts with Programs, Geological Society of America, 15, 543.Google Scholar
Christy, A.G. (1988) A new 2c superstructure in beryllian sapphirine from Casey Bay, Enderby Land, Antarctica. American Mineralogist, 73, 11341137.Google Scholar
Christy, A.G. (1989) The effect of composition, temperature and pressure on the stability of the ITc and 2M polytypes of sapphirine. Contributions to Mineralogy and Petrology, 103, 203215.CrossRefGoogle Scholar
Christy, A.G. and Putnis, A. (1988) Planar and line defects in the sapphirine polytypes. Physics and Chemistry of Minerals, 15, 548558.CrossRefGoogle Scholar
Christy, A.G., Phillips, B.L., Guttler, B.K. and Kirkpatrick, R.J. (1992) A 27A1 and 29Si MAS NMR and infrared spectroscopic study of Al-Si ordering in natural and synthetic sapphirine. American Mineralogist, 77, 8 — 18.Google Scholar
Christy, A.G., Tabira, Y., Holscher, A., Grew, E.S. and Schreyer, W. (2002) Synthesis of beryllian sapphirine in the system MgO-BeO-Al2O3-SiO2-H2O and comparison with naturally occurring beryllian sapphirine and khmaralite. Part 1: Experiments, TEM and XRD. American Mineralogist, 87, 11041112.CrossRefGoogle Scholar
Corsaro, R.A., Miraglia, L. and Pompilio, M. (2007) Petrologic evidence of a complex plumbing system feeding the July—August 2001 eruption of Ml Etna, Sicily, Italy. Bulletin of Volcanology, 69, 401421.CrossRefGoogle Scholar
Cosca, M.A., Rouse, R.R. and Essene, E.J. (1988) Dorrite [Ca2(Mg2Fe4+)(Al4Si2)o20], a new member of the aenigmatite group from a pyrometamorphic melt-rock. American Mineralogist, 73, 14401448.Google Scholar
Curtis, L.W. and Currie, K.L. (1981) Geology and petrology of the Red Wine alkaline complex, central Labrador. Geological Survey Canada Bulletin, 294, 61 pp.Google Scholar
Dawson, J.B. (1997) Neogene—recent rifting and volcanism in northern Tanzania: relevance for comparisons between the Gardar Province and the East African Rift valley. Mineralogical Magazine, 61, 543548.CrossRefGoogle Scholar
Dawson, J.B., Harley, S.L., Rudnick, R.L. and Ireland, T.R. (1997) Equilibration and reaction in Archaean quartz-sapphirine granulite xenoliths from the Lace kimberlite pipe, South Africa. Journal of Metamorphic Geology, 15, 253266.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1978) Rock-forming minerals, volume 2A, Single-chain silicates, second edition. Longman, London. 668 pp.Google Scholar
de Roever, E.W.F. (1973) Preliminary note on coexisting sapphirine and quartz in a mesoperthite gneiss from Bakhuis Mountains (Suriname). Geologisch Mijnbouwkundige Dienst van Suriname Mededeling, 22, 6770.Google Scholar
de Roever, E.W.F.,Kleft, C., Murray, E., Klein, E. and Drucker, W.H. (1976) Surinamite, a new Mg-Al silicate from the Bakhuis Mountains, western Surinam. I. Description, occurrence, and conditions of formation. American Mineralogist, 61, 193197.Google Scholar
de Roever, E.W.F., Lattard, D. and Schreyer, W. (1981) Surinamite: A beryllium-bearing mineral. Contributions to Mineralogy and Petrology, 76, 472473.CrossRefGoogle Scholar
Dornberger-Schiff, K. and Merlino, S. (1974) Order—disorder in sapphirine, aenigmatite and aenigmatite-like minerals. Ada Crystallographica, A30. 168173.Google Scholar
Downes, H., Vaselli, O., Seghedi, I., Ingram, G., Rex, D., Coradossi, N., Pécskay, Z. and Pinarelli, L. (1995) Geochemistry of late Cretaceous-early Tertiary magmatism in Poiana Rusca (Romania). Ada Vulcanologica, 7(2), 209217.Google Scholar
Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts, 19th General Meeting of the International Mineralogical Association, Kobe, Japan, p. 117 (http://rruff.info/websiteviewedon12November2008)Google Scholar
Duggan, M.B. (1990) Wilkinsonite, Na2Fe4+Fel+Si6O20, a new member of the aenigmatite group from the Warrumbungle Volcano, New South Wales, Australia. American Mineralogist, 75, 694701.Google Scholar
Ernst, W.G. (1962) Synthesis, stability relations, and occurrence of riebeckite and riebeckite-arfvedsonite solid solutions. Journal of Geology, 70, 689736.CrossRefGoogle Scholar
Ewart, A., Taylor, S.R. and Capp, A.C. (1968) Geochemistry of the pantellerites of Mayor Island, New Zealand. Contributions to Mineralogy and Petrology, 17, 116140.CrossRefGoogle Scholar
Farges, F., Brown, G.E. Jr., and Velde, D. (1994) Structural environment of Zr in two inosilicates from Cameroon: Mineralogical and geochemical implications. American Mineralogist, 79, 838847.Google Scholar
Ferguson, A.K (1978) A mineralogical investigation of some trachytic lavas and associated pegmatoids from Camel's Hump and Turntable Falls, central Victoria. Journal of the Geological Society of Australia, 25, 185197.CrossRefGoogle Scholar
Fleet, S.G. (1967) Non-space-group absences in sapphirine. Mineralogical Magazine, 36, 449450.CrossRefGoogle Scholar
Fleischer, M. (1936) The formula of aenigmatite. American Journal of Science, 232, 343348.CrossRefGoogle Scholar
Fleischer, M. (1964) New Mineral Names. American Mineralogist, 49, 816821.Google Scholar
Fodor, R.V. and Hanan, B.B. (2000) Geochemical evidence for the Trindade hotspot trace: Columbia seamount ankaramite. Lithos, 51, 293304.CrossRefGoogle Scholar
Foerstner, H. (1881) Ueber Cossyrit, ein Mineral aus den Liparitlaven der Insel Pantellaria. Zeitschrifi fur Krystallographie und Mineralogie, 5, 348362.Google Scholar
Foit, F.F. Jr., Hooper, R.L. and Rosenberg, P.E. (1987) An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming. American Mineralogist, 72, 137147.Google Scholar
Friend, C.R. (1982) Al—Cr substitution in peralumi-nous sapphirines from the Bjornesund area, Fiskenaesset region, southern West Greenland. Mineralogical Magazine, 46, 323328.CrossRefGoogle Scholar
Fuchs, L.H. (1971) Occurrence of wollastonite, rhonite, and andradite in the Allende meteorite. American Mineralogist, 56, 20532068.Google Scholar
Fuchs, L.H. (1978) The mineralogy of a rhonite-bearing calcium aluminum rich inclusion in the Allende meteorite. Meteoritics, 13, 7388.CrossRefGoogle Scholar
Gaeta, M. and Mottana, A. (1991) Phase relations of aenigmatite minerals in a syenitic ejectum, Wonchi volcano, Ethiopia. Mineralogical Magazine, 55, 529534.CrossRefGoogle Scholar
Games, R.V., Skinner, H.C., Foord, E.E., Mason, B., Rosenzweig, A., King, V.T. and Dowty, E. (1997) Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, eighth edition. Wiley, New York, 1819pp.Google Scholar
Gamble, J.A. and Kyle, P.R. (1987) The origins of glass and amphibole in spinel—wehrlite xenoliths from Foster Crater, McMurdo Volcanic Group, Antarctica. Journal of Petrology, 28, 755779.CrossRefGoogle Scholar
Gasparik, T., Parise, J.B., Reeder, R.J., Young, V.G. and Wilford, W.S. (1999) Composition, stability, and structure of a new member of the aenigmatite group, Na2Mg4+xFe2^2xSi6+xO20> synthesized at 13 — 14 GPa. American Mineralogist, 84, 257266.CrossRefGoogle Scholar
Gibb, F.G. and Henderson, C.M. (1996) The Shiant Isles Main Sill: structure and mineral fractionation trends. Mineralogical Magazine, 60, 6797.CrossRefGoogle Scholar
Gnos, E. and Kurz, D. (1994) Sapphirine-quartz and sapphirine-corundum assemblages in metamorphic rocks associated with the Semail Ophiolite (United Arab Emirates). Contributions to Mineralogy and Petrology, 116, 398410.CrossRefGoogle Scholar
Godard, G. and Mabit, J.L. (1998) Peraluminous sapphirine formed during retrogression of a kya-nite-bearing eclogite from Pays de Leon, Armorican Massif, France. Lithos, 43, 1529.CrossRefGoogle Scholar
Gobner, B. and MuBgnug, F (1928) Vergleichende rontgenographische Untersuchung von Magnesiumsilikaten. Neues Jahrbuch fur Mineralogie, Geologie und Palaontologie Monatshefte Abteilung A, 58, 213252.Google Scholar
GoBner, B. and MuBgnug, F. (1929) Uber den Anigmatit und seine Stellung im System der Silikate. Centralblatt der Mineralogie, Geologie und Palaontologie, Abteilung A, Mineralogie und Petrographie, 1929, 511.Google Scholar
Grapes, R., Yagi, K. and Okumura, K. (1979) Aenigmatite, sodic pyroxene, arfvedsonite and associated minerals in syenites from Morotu, Sakhalin. Contributions to Mineralogy and Petrology, 69, 97103.CrossRefGoogle Scholar
Grapes, R.H., Wysoczanski, RJ. and Hoskin, P.W. (2003) Rhönite paragenesis in pyroxenite xenoliths, Mount Sidley volcano, Marie Byrd Land, West Antarctica. Mineralogical Magazine, 67, 639651.CrossRefGoogle Scholar
Grauch, R.I., Lindahl, I., Evans, H.T., Jr., Burt, D.M., Fitzpatrick, J.J., Foord, E.E., Graff, P.R. and Hysingjord, J. (1994) Hogtuvaite, a new beryllian member of the aenigmatite group from Norway, with new X-ray data on aenigmatite. The Canadian Mineralogist, 32, 439448.Google Scholar
Grew, E.S. (1981) Surinamite, taaffeite, and beryllian sapphirine from pegmatites in granulite-facies rocks in Casey Bay, Enderby Land, Antarctica. American Mineralogist, 66, 10221033.Google Scholar
Grew, E.S. (1986) Petrogenesis of kornerupine at Waldheim (Sachsen), German Democratic Republic. Zeitschrift fur Geologische Wissenschaften (Berlin), 14, 525558.Google Scholar
Grew, E.S. (1996) Borosilicates (exclusive of tourmaline) and boron in rock-forming minerals in metamorphic environments. Pp. 387502. in: Boron: Mineralogy, Petrology, and Geochemistry. (Grew, E.S. and Anovitz, L.M., editors). Reviews in Mineralogy, 33, Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Grew, E.S. (2002) Beryllium in metamorphic environments (emphasis on aluminous compositions). Pp. 487549 in: Beryllium: Mineralogy, Petrology, and Geochemistry. (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Grew, E.S., Belakovskiy, D.I. and Leskova, N.V. (1988) Phase equilibria in talc-kyanite-hornblende rocks (with andalusite and sillimanite) from Kugi-Lal, southwestern Pamirs. Doklady Akademii Nauk SSSR, 299, 12221226 (in Russian).Google Scholar
Grew, E.S., Chernosky, J.V., Werding, G., Abraham, K. Marquez, N. and Hinthorne, J.R. (1990) Chemistry of kornerupine and associated minerals, a wet chemical, ion microprobe, and X-ray study emphasizing Li, Be, B and F contents. Journal of Petrology, 31; 10251070.CrossRefGoogle Scholar
Grew, E.S., Pertsev, N.N., Boronikhin, V.A., Borisovskiy, S.Ye., Yates, M.G. and Marquez, N. (1991a) Serendibite in the Tayozhnoye deposit of the Aldan Shield, eastern Siberia, U.S.S.R. American Mineralogist, 76, 10611080.Google Scholar
Grew, E.S., Yates, M.G., Beryozkin, V.I. and Kitsul, V.I. (19916) Kornerupine in slyudites from the Usmun River Basin in the Aldan Shield. II. Chemistry of the minerals, mineral reactions. Geologiya i Geofizika, 1991(7), 99–116(English translation. Soviet Geology and Geophysics, 32(7), 8598).Google Scholar
Grew, E.S., Yates, M.G., Romanenko, I.M., Christy, A. G. and Swihart, G.H. (1992) Calcian, borian sapphirine from the serendibite deposit at Johnsburg, N. Y., USA. European Journal of Mineralogy, 4, 475485.CrossRefGoogle Scholar
Grew, E.S., Pertsev, N.N., Yates, M.G., Christy, A.G., Marquez, N. and Chernosky, J.V. (1994) Sapphirine+forsterite and sapphirine+humite-group minerals in an ultra-magnesian lens from Kuhai-lal, SW Pamirs, Tajikistan: are these assemblages forbidden. Journal of Petrology, 35, 12751293.CrossRefGoogle Scholar
Grew, E.S., Yates, M.G., Barbier, L, Shearer, C.K., Sheraton, J.W., Shiraishi, K. and Motoyoshi, Y(2000) Granulite-facies beryllium pegmatites in the Napier Complex in Khmara and Amundsen Bays, western Enderby Land, East Antarctica. Polar Geoscience, 13, 140.Google Scholar
Grew, E.S., Hålenius, U., Kritikos, M. and Shearer, C.K. (2001) New data on welshite, e.g. Ca2Mg3 8Mn0.6 2+Fe0.1 2+Sb1.5 5+[Si2.8Be1 7Feo^,5Alo.7 AS0.17O18], an aenigmatite-group mineral. Mineralogical Magazine, 65, 665674.CrossRefGoogle Scholar
Grew, E.S., Barbier, J., Britten, J., Yates, M.G., Polyakov, V.O., Shcherbakova, E.P., Hålenius, U. and Shearer, C.K. (2005) Makarochkinite, Ca2Fe4 2+Fe3+TiSi4BeAlo20, a new beryllosilicate member of the aenigmatite-sapphirine-surinamite group from the Il'men Mountains (southern Urals), Russia. American Mineralogist, 90, 14021412.CrossRefGoogle Scholar
Grew, E.S., Yates, M.G., Shearer, C.K, Hagerty, J.J., Sheraton, J.W. and Sandiford, M. (2006) Beryllium and other trace elements in paragneisses and anatectic veins of the ultrahigh-temperature Napier Complex, Enderby Land, East Antarctica: the role of sapphirine. Journal of Petrology, 47, 859882.CrossRefGoogle Scholar
Grew, E.S., Barbier, J., Britten, J., Halenius, U. and Shearer, C.K. (2007) The crystal chemistry of welshite, a non-centrosymmetric (PI) aenigmatite-sapphirine-surinamite group mineral. American Mineralogist, 92, 8090.CrossRefGoogle Scholar
Grew, E.S., Halenius, U. and Pasero, M. (2008) The crystal-chemistry of aenigmatite revisited: electron microprobe data, structure refinement and Mossbauer spectroscopy of aenigmatite from Vesteroya (Norway). European Journal of Mineralogy, 20, 983991.CrossRefGoogle Scholar
Groth, P. (1883) Footnote. Zeitschrift fur Krystallographie und Mineralogie, 7, 607.Google Scholar
Grünhagen, H. and Seek, H.A. (1972) Rhönit aus einem Melaphonolith vom Puy de Saint-Sandoux (Auvergne). Tschermaks Mineralogische und Petrographische Mitteilungen, 18, 1738.CrossRefGoogle Scholar
Hamilton, J.D., Hoskins, B.F., Mumme, W.G., Borbidge, W.E. and Montague, M.A. (1989) The crystal structure and crystal chemistry of Ca2.3Mgo.8Al1.5SiuFeg.3O20 (SFCA): solid solution limits and selected phase relationships of SFCA in the SiO2-Fe2O3-CaO(-Al2O3) system. Neues Jahrbuch fur Mineralogie Abhandlungen, 161, 126.Google Scholar
Harley, S.L. and Christy, A.G. (1995) Titanium-bearing sapphirine in a partially melted aluminous granulite xenolith, Vestfold Hills, Antarctica: geological and mineralogical implications. European Journal of Mineralogy, 7, 637653.CrossRefGoogle Scholar
Hatert, F. and Burke, E.A. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Havette, A., Clocchiatti, R., Nativel, P. and Montaggioni, L.F. (1982) Une paragenese inhabituelle a fassa'ite, melilite et rhonite dans un basalte alcalin contamine au contact d'un recif corallien (Saint-Leu, He de la Reunion). Bulletin de Mineralogie, 105, 364375.CrossRefGoogle Scholar
Hawthorne, F.C. and Oberti, R. (2006) On the classification of amphiboles. The Canadian Mineralogist, 44, 121.CrossRefGoogle Scholar
Henderson, C.M., Pendlebury, K. and Foland, K.A. (1989) Mineralogy and petrology of the Red Hill alkaline igneous complex, New Hampshire, U.S.A. Journal of Petrology, 30, 627666.CrossRefGoogle Scholar
Higgins, IB. and Ribbe, P.H. (1979) Sapphirine II. A neutron and X-ray diffraction study of (Mg—Al) and (Si—Al) ordering in monoclinic sapphirine. Contributions to Mineralogy and Petrology, 68, 357368.CrossRefGoogle Scholar
Higgins, J.B., Ribbe, P.H. and Herd, R.K (1979) Sapphirine I. Crystal chemical contributions. Contributions to Mineralogy and Petrology, 68, 349356.CrossRefGoogle Scholar
Hodges, F.N. and Barker, D.S. (1973) Solid solution in aenigmatite. Year Book — Carnegie Institution of Washington, 72, 578581.Google Scholar
Howie, R.A. and Walsh, J.N. (1981) Riebeckitic arfvedsonite and aenigmatite from the Ailsa Craig microgranite. Scottish Journal of Geology, 17 123128.CrossRefGoogle Scholar
Hurai, V., Huraiova, M., Konecny, P. and Thomas, R. (2007) Mineral-melt-fluid composition of carbonate-bearing cumulate xenoliths in Tertiary alkali basalts of southern Slovakia. Mineralogical Magazine, 71, 6379.CrossRefGoogle Scholar
Ike, E.C. (1985) Postmagmatic arfvedsonite—aenigmatite paragenesis in the ring-dyke of the Burra Centre, Ningi-Burra complex, Nigeria. Journal of African Earth Sciences, 3, 101105.CrossRefGoogle Scholar
Ivanov, A.V., Kononkova, N.N., Yang, S.V., and Zolensky, M.E. (2003) The Kaidun Meteorite: Clasts of alkaline-rich fractionated materials. Meteoritics & Planetary Science, 38, 725737.CrossRefGoogle Scholar
Jannot, S., Schiano, P. and Boivin, P. (2005) Melt inclusions in scoria and associated mantle xenoliths of Puy Beaunit Volcano, Chaine des Puys, Massif Central, France. Contributions to Mineralogy and Petrology, 149, 600612.CrossRefGoogle Scholar
Johan, Z. and Oudin, E. (1986) Presence de grenats, Ca3Ga2(GeO4)3, Ca3Al2[Ge, Si)O4]3 et d'un equivalent ferrifere, germanifere et gallifere de la sapphirine Fe4(Ga,Sn,Fe)4(Ga,Ge)6o20, dans la blende des gisements de la zone axiale pyreneenne. Conditions de formation des phases germaniferes et galliferes. Compte Rendus de I'Academie des Sciences, Paris, 303, Series II, 811816.Google Scholar
Johnsen, O., Ferraris, G., Gault, R.A., Grice, J.D., Kampf, A.R. and Pekov, I.V. (2003) The nomenclature of eudialyte-group minerals. The Canadian Mineralogist, 41, 785794.CrossRefGoogle Scholar
Johnston, A.D. and Stout, J.H. (1984) A highly oxidized ferrian salite-, kennedyite-, forsterite-, and rhonite-bearing alkali gabbro from Kauai, Hawaii and its mantle xenoliths. American Mineralogist, 69, 5768.Google Scholar
Johnston, A.D. and Stout, J.H. (1985) Compositional variation of naturally occurring rhoenite. American Mineralogist, 70, 12111216.Google Scholar
Jones, A.P. (1984) Mafic silicates from the nepheline syenites of the Motzfeldt centre, South Greenland. Mineralogical Magazine, 48, 1 — 12.CrossRefGoogle Scholar
Jørgensen, K.A. (1987) Mineralogy and petrology of alkaline granophyric xenoliths from the Thorsmörk ignimbrite, southern Iceland. Lithos, 20, 153168.CrossRefGoogle Scholar
Kamineni, D.C. and Rao, A.T. (1988) Sapphirine-bearing quartzite from the eastern Ghats granulite terrain, Vizianagaram, India. Journal of Geology, 96, 209220.CrossRefGoogle Scholar
Kelsey, C.H. and McKie, D. (1964) The unit-cell of aenigmatite. Mineralogical Magazine, 33, 9861001.CrossRefGoogle Scholar
Krivdik, S.G. and Tkachuk, V.I. (1988) Aenigmatite -first occurrence in Ukraine. Dopovidi Akademii Nauk Ukrainskoi RSR, Seriya B, Geologichni, khimichni ta biologichni nauky, 1988(8), 1618 (in Ukrainian).Google Scholar
Krivovichev, S.V. and Armbruster, T. (2004) The crystal structure of jonesite, Ba2(K,Na)[Ti2(Si5Al)O18 (H2O)](H2O)n: A first example of titanosilicate with porous double layers. American Mineralogist, 89, 314318.CrossRefGoogle Scholar
Kuehner, S.M. and Irving, A.J. (2007) Primary ferric iron—bearing rhonite in plutonic igneous angrite NWA 4590: Implications for redox conditions on the angrite parent body. Eos, Transactions of the American Geophysical Union, 88(52), Fall Meeting Supplement, Abstract P41A-0219.Google Scholar
Kunzmann, T. (1989) Rhönit: Mineralchemie, Paragenese und Stabilitat in alkalibasaltischen Vulkaniten (Ein Beitrag zur Minerogenese der Rhödnit-Änigmatit-Mischkristallgruppe). Doctor's Dissertation, Ludwig-Maximilians-Universitat, Miinchen, 152pp.Google Scholar
Kunzmann, T. (1999) The aenigmatite-rhönite mineral group. European Journal of Mineralogy, 11, 743756.CrossRefGoogle Scholar
Kuzel, H -J. (1961) Über Formel und Elementarzelle des Sapphirin. Neues Jahrbuch für Mineralogie Monatshefte, 1961, 6871.Google Scholar
Kyle, P.R. and Price, R.C. (1975) Occurrences of rhonite in alkalic lavas of the McMurdo Volcanic Group, Antarctica, and Dunedin Volcano, New Zealand. American Mineralogist, 60, 722725.Google Scholar
Larsen, L.M. (1977) Aenigmatites from the Ilimaussaq intrusion, south Greenland: Chemistry and petrolo-gical implications. Lithos, 10, 257270.CrossRefGoogle Scholar
Liati, A. and Seidel, E. (1994) Sapphirine and hogbomite in overprinted kyanite-eclogites of central Rhodope, N. Greece: first evidence of granulite-facies metamorphism. European Journal of Mineralogy, 6, 733738.CrossRefGoogle Scholar
Lindsley, D.H. and Haggerty, S.E. (1970) Phase relations of Fe-Ti oxides and aenigmatite; oxygen fugacity of the pegmatoid zones. Year Book — Carnegie Institute of Washington, 69, 278284.Google Scholar
Lorenzen, J. (1882) On some minerals from the sodalite-syenite in Juliane-haab district, south Greenland. Mineralogical Magazine, 5, 4970.CrossRefGoogle Scholar
Lorenzen, J. (1893) Undersolgelse af mineralier fra Gronland. 7. Saphirin. Meddelelser om Gronland, 7, 1719 (in Danish).Google Scholar
Machin, M.P. and Süsse, P. (1974) Serendibite: a new member of the aenigmatite structure group. Neues Jahrbuch fur Mineralogie Monatshefte, 1974, 435441.Google Scholar
Magonthier, M.C. and Velde, D. (1976) Mineralogy and petrology of some Tertiary leucite — rhönite basanites from central France. Mineralogical Magazine, 40, 817826.CrossRefGoogle Scholar
Mahood, G. A. and Stimac, J.A. (1990) Trace-element partitioning in pantellerites and trachytes. Geochimica et Cosmochimica Acta, 54, 22572276.CrossRefGoogle Scholar
Mao, H.K. and Bell, P.M. (1974) Crystal-field effects of trivalent titanium in fassaite from the Pueblo de Allende meteorite. Year Book — Carnegie Institution of Washington, 73, 488492.Google Scholar
Marks, M. and Markl, G. (2003) Ilimaussaq ‘en miniature': closed-system fractionation in an agpaitic dyke rock from the Gardar Province, South Greenland (contribution to the mineralogy of Ilimaussaq no. 117). Mineralogical Magazine, 67, 893919.CrossRefGoogle Scholar
Marsh, J.S. (1975) Aenigmatite stability in silica-undersaturated rocks. Contributions to Mineralogy and Petrology, 50, 135144.CrossRefGoogle Scholar
Mason, B. and Taylor, S.R. (1982) Inclusions in the Allende meteorite. Smithsonian Contributions to the Earth Sciences, 25, 30pp.Google Scholar
McKie, D. (1963) Order—disorder in sapphirine. Mineralogical Magazine, 33, 635645.CrossRefGoogle Scholar
Mercier, A., Debat, P. and Saul, J.M. (1999) Exotic origin of the ruby deposits of the Mangari area in SE Kenya. Ore Geology Reviews, 14, 83104.CrossRefGoogle Scholar
Merlino, S. (1970) Crystal structure of aenigmatite. Journal of the Chemical Society. Section D: Chemical Communications, 20, 12881289.CrossRefGoogle Scholar
Merlino, S. (1972) X-ray crystallography of krinovite. Zeitschrift für Kristallographie, 136, 8188.CrossRefGoogle Scholar
Merlino, S. (1980) Crystal structure of sapphirine-1 Tc. Zeitschrift für Kristallographie, 151, 91100.Google Scholar
Merlino, S. and Pasero, M. (1987) Studio HRTEM della saffirina: relazioni tra politipi ITc e 2M e nuovo politipo 4M. Rendiconti della Società Italiana di Mineralogiae Petrologia., 42, 310 (in Italian).Google Scholar
Merlino, S. and Pasero, M. (1997) Merlino, S. and Pasero, M. (1997) Polysomatic approach in the crystal chemical study of minerals. Pp. 297312 in: Modular Aspects of Minerals (Merlino, S., editor). European Mineralogical Union Notes in Mineralogy, 1. Eőtvős University Press, Budapest.Google Scholar
Merlino, S. and Zvyagin, B.B. (1998) Modular features of sapphirine-type structures. Zeitschrift fur Kristallographie, 213, 513521.Google Scholar
Mitrofanov, F.P. and Afanas'yeva, L.I. (1966) Aenigmatite from alkalic syenite of the eastern Sayans. Doklady of the Academy of Sciences of the U.S.S.R., Earth Science Sections, 166, 111113.Google Scholar
Moore, P.B. (1967) Eleven new minerals from Langban, Sweden. The Canadian Mineralogist, 9, 301 (abstract).Google Scholar
Moore, P.B. (1968) Crystal structure of sapphirine. Nature, 218, 8182.CrossRefGoogle Scholar
Moore, P.B. (1969) The crystal structure of sapphirine. American Mineralogist, 54, 3149.Google Scholar
Moore, P.B. (1970) Mineralogy and chemistry of Langban-type deposits in Bergslagen, Sweden. Mineralogical Record, 1, 154172.Google Scholar
Moore, P.B. (1976) Surinamite, a new Mg-Al silicate from the Bakhuis Mountains, western Surinam. II. X-ray crystallography and proposed crystal structure. American Mineralogist, 61, 197199.Google Scholar
Moore, P.B. (1978) Welshite, Ca2Mg4Fe3+Sb5+O2[Si4Be2O18], a new member of the aenigmatite group. Mineralogical Magazine, 42, 129132.CrossRefGoogle Scholar
Moore, P.B. and Araki, T. (1983) Surinamite, caMg3Al4Si3BeO16: its crystal structure and relation to sapphirine, caMg2.8Al7.2Si1.2O16 . American Mineralogist, 68, 804810.Google Scholar
Mumme, W.G. (1988) A note on the relationship of Ca2.3Mg0.8Al1.5Si1.1Fe8.3O20 (SFCA) with aenigmatite group minerals and sapphirine. Neues Jahrbuch f7uuml;r Mineralogie Monatshefte, 1988, 359366.Google Scholar
Mumme, W.G. (2003) The crystal structure of SFCA-II, Ca5.1Al9.3Fe18.7 3+Fe0.9 2+o48 a new homologue of the aenigmatite structure-type, and structure refinement of SFCA-type, Ca2Al5Fe7O20. Implications for the nature of the ‘ternary-phase solid-solution’ previously reported in the CaO-Al2O3-iron oxide system. Neues Jahrbuch fur Mineralogie Abhandlungen, 178, 307335.CrossRefGoogle Scholar
Mumme, W.G., Clout, J.M. and Gable, R.W. (1998) The crystal structure of SFCA-I, Ca3.18Fe14.66 3+Al1.34Fe0.82 2+o28, a homologue of the aenigmatite structure type, and new crystal structure refinements of β-CFF, Ca2.99Fe14.30 3+Fe0.55 2+o25 and Mg-free SFCA, Ca2.45Fe9.04 3+Al1.74Fe0.16 2+Si0.6o20 . Neues Jahrbuch fur Mineralogie Abhandlungen, 173, 93 — 117.Google Scholar
Nash, W.P., Carmichael, I.S. and Johnson, R.W. (1969) The mineralogy and petrology of Mount Suswa, Kenya. Journal of Petrology, 10, 409439.CrossRefGoogle Scholar
Navrotsky, A. (1975) Thermochemistry of chromium compounds, especially oxides at high temperature. Geochimica et Cosmochimica Ada, 39, 819832.CrossRefGoogle Scholar
Nédli, Z. and Tóth, T.M. (2003) Petrography and mineral chemistry of rhönite in ocelli of alkali basalt from Villany Mts, SW Hungary. Ada Mineralogica-Petrographica, Szeged, 44, 5156.Google Scholar
Nicholls, J. and Carmichael, I.S. (1969) Peralkaline acid liquids: a petrologic study. Contributions to Mineralogy and Petrology, 20, 268294.CrossRefGoogle Scholar
Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, 1998. The Canadian Mineralogist, 36, 913926.Google Scholar
Nicollet, C. (1990) Crustal evolution of the granulites of Madagascar. Pp. 291310 in: Vielzeuf, D. and Vidal, P., (editors). Granulites and Crustal Evolution, NATO Advanced Science Institutes Series, Kluwer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Nijland, T.G., Touret, J.L. and Visser, D. (1998) Anomalously low temperature orthopyroxene, spinel, and sapphirine occurrences in metasediments from the Bamble amphibolite-to-granulite facies transition zone (South Norway): possible evidence for localized action of saline fluids. Journal of Geology, 106, 575590.CrossRefGoogle Scholar
Nishio, F., Katsushima, T. and Ohmae, H. (1985) Volcanic ash layers in bare ice areas near the Yamato Mountains, Dronning Maud Land and the Allan Hills, Victoria Land, Antarctica. Annals of Glaciology, 7, 3441.CrossRefGoogle Scholar
Nkoumbou, C. Déruelle, B., and Velde, D. (1995) Petrology of Mt Etinde nephelinite series. Journal of Petrology, 36, 373395.CrossRefGoogle Scholar
Olsen, E. and Fuchs, L. (1968) Krinovite, NaMg2CrSi3O10: a new meteorite mineral. Science, 161, 786787.CrossRefGoogle ScholarPubMed
Olsson, H.B. (1983) Rhönite from Skåne (Scania), southern Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 105, 281286.CrossRefGoogle Scholar
Owen, J.V., Greenough, J.D., Hy, C. and Ruffman, A. (1988) Xenoliths in a mafic dyke at Popes Harbour, Nova Scotia: implications for the basement to the Meguma Group. Canadian Journal of Earth Sciences, 25, 14641471.CrossRefGoogle Scholar
Palache, C. (1933) Crystallographic notes on anapaite, ainigmatite and eudidymite. Zeitschrift für Kristallographie, Kristallogeometrie, Kristallophysik, Kristallochemie, 86, 280291.Google Scholar
Peacor, D.R. (1968) The crystal structure of CoGeO3 . Zeitschrift fur Kristallographie, 126, 299306.CrossRefGoogle Scholar
Pertsev, N.N. and Nikitina, I.B. (1959) New data on serendibite. Zapiski Vs esoyuzno go Mineralogicheskogo Obshchestva, 88, 169172 (in Russian).Google Scholar
Platt, R.G. and Woolley, A. R. (1986) The mafic mineralogy of the peralkaline syenites and granites of the Mulanje Complex, Malawi. Mineralogical Magazine, 50, 8599.CrossRefGoogle Scholar
Podlesskii, K.K., Aranovich, L. Ya., Gerya, T.V. and Kosyakova, N.A. (2008) Sapphirine-bearing assemblages in the system MgO-Al2O3-SiO2: A continuing ambiguity. European Journal of Mineralogy, 20, 721734.CrossRefGoogle Scholar
Polyakov, V.O., Cherepivskaya, G.Ye. and Shcherbakova, Ye.P. (1986) Makarochkinite — a new beryllosilicate. In New and little-studied minerals and mineral associations of the Urals. Akademiya Nauk SSSR Ural'skiy Nauchnyy Tsentr, Sverdlovsk, p. 108110 (in Russian).Google Scholar
Powell, M. (1978) The crystallisation history of the Igdlerfigssalik nepheline syenite intrusion, Greenland. Lithos, 11, 99120.CrossRefGoogle Scholar
Prestvik, T., Torske, T., Sundvoll, B. and Karlsson, H. (1999) Petrology of early Tertiary nephelinites off mid-Norway. Additional evidence for an enriched endmember of the ancestral Iceland plume. Lithos, 46, 317330.CrossRefGoogle Scholar
Price, R.C., Johnson, R.W., Gray, CM. and Frey, F.A. (1985) Geochemistry of phonolites and trachytes from the summit region of Mt. Kenya. Contributions to Mineralogy and Petrology, 89, 394409.CrossRefGoogle Scholar
Prior, G.T. and Coomaraswamy, A.K. (1903) Serendibite, a new borosilicate from Ceylon. Mineralogical Magazine, 13, 224227.CrossRefGoogle Scholar
Raade, G. and Larsen, A.O. (1980) Polylithionite from syenite pegmatite at Vora, Sandefjord, Oslo region, Norway. Contributions to the mineralogy of Norway, No. 65. Norsk Geologisk Tidsskrift, 60, 117124.Google Scholar
Redhammer, G.J., Roth, G., Topa, D. and Amthauer, G. (2008) Synthetic aenigmatite analog Na2(Mn5.26Na0.74)Ge6020: structure and crystal chemical considerations. Ada Crystallographica Section C, 64, i21i26.Google Scholar
Ren, M., Omenda, P.A., Anthony, E.Y., White, J.C., Macdonald, R. and Bailey, D.K. (2006) Application of the QUILF thermobarometer to the peralkaline trachytes and pantellerites of the Eburru volcanic complex, East African Rift, Kenya. Lithos, 91, 109124.CrossRefGoogle Scholar
Ridolfi, F., Renzulli, A., Macdonald, R. and Upton, B.GJ. (2006) Peralkaline syenite autoliths from Kilombe Volcano, Kenya Rift valley: Evidence for subvolcanic interaction with carbonatitic fluids. Lithos, 91, 373392.CrossRefGoogle Scholar
Rondorf, A. (1989) Rhönit vom Vulkan Sattel bei Eich/ Osteifel. Der Aufschluss, 40, 391401.Google Scholar
Rudneva, A.V. and Malysheva, T.Ya. (1960) The composition of baykovite. Doklady Akademii Nauk SSSR, 130, 13291332 (in Russian).Google Scholar
Sabau, G., Alberico, A. and Negulescu, E. (2002) Peraluminous sapphirine in retrogressed kyanite-bearing eclogites from the South Carpathians: status and implications. International Geology Review, 44, 859876.CrossRefGoogle Scholar
Sahama, T.G., Lehtinen, M. and Rehtijärvi, P. (1974) Properties of sapphirine. Annales Academiae Scientiarum Fennicae, Series A3: Geologica— Geographica, 114, 24pp.Google Scholar
Sajeev, K. and Osanai, Y. (2004) Ultrahigh-temperature metamorphism (1150°C, 12 kbar) and multistage evolution of Mg-, Al-rich granulites from the central Highland Complex, Sri Lanka. Journal of Petrology, 45, 18211844.CrossRefGoogle Scholar
Savel'yeva, V.B., Ushchapovskaya, Z.F., Medvedeva, T.I., Chestnova, Ye.P. and Balyshev, S.O. (1995) Serendibite from skarns of the Ozyorskiy Massif (Western Baikal region). Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 124(2), 8798 (in Russian).Google Scholar
Semenov, Ye.I., Khomyakov, A.P. and Bykova, A.V. (1965) Magbasite, a new mineral. Doklady Akademii Nauk SSSR, 163, 718719 (in Russian).Google Scholar
Shcherbakova, Ye.P., Bazhenov, A.G., and Valizer, N.I. (2004) How makarochkinite was discovered. Pp. 2833. in: Polyakov's readings, Institute of Mineralogy, Miass, Russia (in Russian).Google Scholar
Schmetzer, K., Bosshart, G., Bernhardt, H.J., Gübelin, E.J. and Smith, C.P. (2002) Serendibite from Sri Lanka. Gems & Gemology, 38, 7379.CrossRefGoogle Scholar
Schreyer, W. and Abraham, K. (1975) Peraluminous sapphirine as a metastable reaction product in kyanite—gedrite—talc schist from Sar e Sang, Afghanistan. Mineralogical Magazine, 40, 171—180.CrossRefGoogle Scholar
Sheng, Y.J., Hutcheon, I.D. and Wasserburg, GJ. (1991) Origin of plagioclase-olivine inclusions in carbonaceous chondrites. Geochimica et Cosmochimica Ada. 55, 581599.CrossRefGoogle Scholar
Sills, J.D, Ackermand, D., Herd, R.K. and Windley, B.F. (1983) Bulk composition and mineral parageneses of sapphirine-bearing rocks along a gabbro—lherzolite contact at Finero, Ivrea zone, N Italy. Journal of Metamorphic Geology, 1, 337351.CrossRefGoogle Scholar
Simon, G. and Chopin, C. (2001) Enstatite—sapphirine crack-related assemblages in ultrahigh-pressure py-rope megablasts, Dora-Maira Massif, western Alps. Contributions to Mineralogy and Petrology, 140, 422440.CrossRefGoogle Scholar
Simon, S.B., Davis, A.M. and Grossman, L. (1999) Origin of compact Type A refractory inclusions from CV3 carbonaceous chondrites. Geochimica et Cosmochimica Ada, 63, 1233—1248.CrossRefGoogle Scholar
Soellner, J. (1907) Ueber Rhönit, ein neues anigmati-tahnliches Mineral und iiber das Vorkommen und die Verbreitung desselben in basaltischen Gesteinen. Neues Jahrbuch fur Mineralogie, Geologie und Paleaontologie Beilage-Band, 24, 475547.Google Scholar
Soellner, J. (1909) Beitrage zur Kenntnis des Cossyrits von Pantelleria. Zeitschrift fur Krystallographie und Mineralogie, 46, 518562.Google Scholar
Steffen, G., Seifert, F. and Amthauer, G. (1984) Ferric iron in sapphirine: a Mossbauer spectroscopic study. American Mineralogist, 69, 339348.Google Scholar
Stolz, A.J. (1986) Mineralogy of the Nandewar volcano, northeastern New South Wales, Australia. Mineralogical Magazine, 50, 241255.CrossRefGoogle Scholar
Stromeyer, F. (1819) 2. Saphirin von Fiskenaes oder Kikertarsoeitsiak. Pp. 19941995 in: Göttingische gelehrte Anzeigen unter der Aussicht der königlische Gesellschaft der Wissenschaften, Weidmannsche Buchhandlung, Berlin.Google Scholar
Stromeyer, F. (1821) XXVI. Untersuchung des Saphirins von Fiskanaes in Gronland. Pp. 391398 in: Untersuchungen iiber die Mischung der Mineralkorper and anderer damit verwandten Substanzen. vandenhoeck und Ruprecht, Gottingen, Germany.Google Scholar
Strunz, H. and Nickel, E.H. (2001) Strum Mineralogical Tables. Chemical-Structural Mineral Classification System, Ninth Edition, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, 870pp.Google Scholar
Sugiyama, K., Monkawa, A. and Sugiyama, T. (2005) Crystal structure of the SFCAM phase, Ca2(Ca,Fe,Mg,Al)6(Fe,Al,Si)6020 . 1S1J International, 45, 560568.Google Scholar
Süsse, P. (1968) Serendibite, space group and cell dimensions. Naturwissenschafien, 55, 176.CrossRefGoogle Scholar
Tateishi, K., Tsunogae, T., Santosh, M. and Janardhan, A.S. (2004) First report of sapphirine+quartz assemblage from Southern India: implications for ultrahigh-temperature metamorphism. Gondwana Research, 7, 899912.CrossRefGoogle Scholar
Thompson, R.N. and Chisholm, J.E. (1969) Synthesis of aenigmatite. Mineralogical Magazine, 37, 253255.CrossRefGoogle Scholar
Timina, T. Yu., Sharyagin, V.V. and Golovin, A.V. (2006) Melt evolution during the crystallization of basanites of the Tergesh pipe, northern Minusinsk Depression. Geochemistry International, 44, 752770.CrossRefGoogle Scholar
Treiman, A.H. (2008) Rhönite in Luna 24 pyroxenes: First find from the Moon, and implications for volatiles in planetary magmas. American Mineralogist, 93, 488491.CrossRefGoogle Scholar
Ussing, N.V. (1889) Undersögelse af mineraler fra Fiskernæs i Grönland. 1. Sapphirin. Öfversigt af Kongliga Vetenskaps-Akademiens Forhandlingar, 46(1), 1726 (in Danish).Google Scholar
Ussing, N.V. (1898) Aignigmatit. Kölbingit. Pp. 214220 in: Mineralogisk-petrografiske Undersøgelser af Gronlandske Nefelinsyeniter og beslfegtede Bjfergarter. Meddelelser om Gronland, 14, (in Danish).Google Scholar
van Derveer, D.G., Swihart, G.H., Sen Gupta, P.K. and Grew, E.S. (1993) Cation occupancies in serendibite: A crystal structure study. American Mineralogist, 78, 195203.Google Scholar
Velde, D. (1978) An aenigmatite—richterite—olivine trachyte from Puu Koae, West Maui, Hawaii. American Mineralogist, 63, 771—-778.Google Scholar
Vlasov, K.A., Kuz'menko, M.Z. and Es'kova, E.M. (1966) The Lovozero Alkali Massif. Hafner, New York, 627 pp.Google Scholar
Vogt, T. (1947) Mineral assemblages with sapphirine and kornerupine. Bulletin de la Commission Géologique de Finlande, 140, 1524.Google Scholar
Walenta, K. (1969) Zur Kristallographie des Rhönits. Zeitschrift fur Kristallographie, 130, 214230.CrossRefGoogle Scholar
Warren, P.H., Huber, H. and Ulff-Moller, F. (2006) Alkali-feldspathic material entrained in Fe,S-rich veins in a monomict ureilite. Meteoritics . Planetary Science, 41, 797813.Google Scholar
Warren, R.G. and Hensen, BJ. (1987) Peraluminous sapphirine from the Aileron district, Arunta Block, central Australia. Mineralogical Magazine, 51, 409415.Google Scholar
White, J.C., Ren, M. and Parker, D.F. (2005) Variation in mineralogy, temperature, and oxygen fugacity in a suite of strongly peralkaline lavas and tuffs, Pantelleria, Italy. The Canadian Mineralogist, 43, 13311347.CrossRefGoogle Scholar
Yagi, K. and Souther, J.G. (1974) Aenigmatite from Mt Edziza, British Columbia, Canada. American Mineralogist, 59, 820829.Google Scholar
Yakubovich, O.V., Malinovskii, Yu.A. and Polyakov, V.O. (1990) Crystal structure of makarochkinit. Kristallografiya, 35, 1388–1394 (English translation: Soviet Physics and Crystallography 818822.Google Scholar
Yang, H. and Konzett, J. (2000) High-pressure synthesis of Na2Mg6Si6O18(OH)2 - a new hydrous silicate phase isostructural with aenigmatite. American Mineralogist, 85, 259262.CrossRefGoogle Scholar
Zies, E.G. (1966) A new analysis of cossyrite from the island of Pantelleria. American Mineralogist, 51, 200205 Google Scholar
Zolensky, M. and Ivanov, A. (2003) The Kaidun microbreccia meteorite: A harvest from the inner outer asteroid belt. Chemie der Erde Geochemistry, 63, 185246.CrossRefGoogle Scholar
Zvyagin, B.B. and Merlino, S. (2003) The pyroxene- spinel polysomatic system. Zeitschrift für Kristallographie, 218, 210220.Google Scholar