Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T03:59:30.982Z Has data issue: false hasContentIssue false

Sm-Nd and Lu-Hf isotope and trace-element systematics of Mesoarchaean amphibolites, inner Ameralik fjord, southern West Greenland

Published online by Cambridge University Press:  02 January 2018

Kristoffer Szilas*
Affiliation:
Stanford University, Department of Geological and Environmental Sciences, 450 Serra Mall, CA 94305, USA
J. Elis Hoffmann
Affiliation:
Steinmann Institut für Geologie, Mineralogie und Paläontologie, Abt. Endogene Prozesse, Rheinische Wilhelms-Universität Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany Universität zu Köln, Geologisch-Mineralogisches Institut, Albertus-Magnus-Platz, 50674 Köln, Germany Institut fü r Geologische Wissenschaften, Abt. Geochemie, Freie Universität Berlin, Malteserstrasse 74-100, 12249 Berlin, Germany
Christina Hansmeier
Affiliation:
Steinmann Institut für Geologie, Mineralogie und Paläontologie, Abt. Endogene Prozesse, Rheinische Wilhelms-Universität Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany
Julie A. Hollis
Affiliation:
Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen K, Denmark Geological Survey of Western Australia, Mineral House, 100 Plain St, East Perth, WA 6000, Australia
Carsten Münker
Affiliation:
Universität zu Köln, Geologisch-Mineralogisches Institut, Albertus-Magnus-Platz, 50674 Köln, Germany
Sebastian Viehmann
Affiliation:
Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
Haino U. Kasper
Affiliation:
Universität zu Köln, Geologisch-Mineralogisches Institut, Albertus-Magnus-Platz, 50674 Köln, Germany

Abstract

Fragmented supracrustal rocks are typical components of Archaean high-grade gneiss terranes, such as those in the North Atlantic Craton. Here we present the first major, trace element and Nd-Hf isotope data for amphibolites collected in the yet poorly studied southern inner Ameralik fjord region of southern West Greenland. In addition, new U-Pb zircon ages were obtained from the surrounding TTG gneisses.

Based on their trace-element patterns, two different groups of amphibolites can be distinguished. Following screening for post-magmatic alteration and outlying ε values, a reduced sample set defines a 147Sm/143Nd regression age of 3038 Ma ±310 Ma (MSWD = 9.2) and a 176Lu/176Hf regression age of 2867 ±160 Ma (MSWD = 5.5). Initial εNd2970Ma values of the least-altered amphibolites range from 0.0 to +5.7 and initial εHf2970Ma range from +0.7 to +10.4, indicating significant isotopic heterogeneity of their mantle sources with involvement of depleted domains as well as crustal sources.

Surprisingly, the amphibolites which are apparently most evolved and incompatible element-rich have the most depleted Hf-isotope compositions. This apparent paradox may be explained by the sampling of a local mantle source region with ancient previous melt depletion, which was re-enriched by a fluid component during subduction zone volcanism or alternatively by preferential melting of an ancient pyroxenite component in the mantle source of the enriched rocks.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper is published as part of a special set in Mineralogical Magazine, Volume 79(4), 2015, arising out of the March 2014 NAC Conference on the North Atlantic Craton.

References

Adam, J., Rushmer, T., O'Neil, J. and Francis, D. (2012) Hadean greenstones from the Nuvvuagittuq fold belt and the origin of the Earth's early continental crust. Geology, 40, 363366.CrossRefGoogle Scholar
Ashwal, L.D., Morrison, D.A., Phinney, W.C. and Wood, J. (1983) Origin of Archean anorthosites: evidence from the Bad Vermilion Lake complex, Ontario. Contributions to Mineralogy and Petrology, 82, 259273.CrossRefGoogle Scholar
Barker, F., Arth, J.G. and Millard, H.T. (1979) Archaean trondhjemites of the southwestern Big Horn Mountains, Wyoming: a preliminary report. Pp. 401414 in: Trondhjemites, Dacites and Related Rocks (F. Barker, editor). Elsevier, Amsterdam.CrossRefGoogle Scholar
Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O'Reilly, S.Y. and Pearson, NJ. (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos, 119, 457466.CrossRefGoogle Scholar
Bhaskar Rao, Y.J., Chetty, T.R.K., Janardhan, A.S. and Gopalan, K. (1996) Sm-Nd and Rb-Sr ages and P-T history of the Archean Sittampundi and Bhavani layered meta-anorthosite complexes in Cauvery shear zone, South India: Evidence for neoproterozoic reworking of archean crust. Contributions to Mineralogy and Petrology, 125, 237250.Google Scholar
Bouvier, A., Vervoort, J.D. and Patchett, PJ. (2008) The Lu—Hf and Sm—Nd isotopic composition of CHUR: constraints from unequillibrated chondrites and applications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 4857.CrossRefGoogle Scholar
Clemens, J.D., Yearron, L.M. and Stevens, G. (2006) Barberton (South Africa) TTG magmas: Geochemical and experimental constraints on source-rock petrology, pressure of formation and tectonic setting. Precambrian Research, 151, 5378.CrossRefGoogle Scholar
Condie, K.C. (editor) (1994) Archean Crustal Evolution. Developments in Precambrian Geology 11. Elsevier, Amsterdam, 528 pp.Google Scholar
Dhuime, B., Hawkesworth, C.J., Cawood, P.A. and Storey, CD., (2012) A change in the geodynamics of continental growth 3 billion years ago. Science, 335, 13341336.CrossRefGoogle ScholarPubMed
Dziggel, A., Diener, J.F.A., Kolb, J. and Kokfelt, T.F. (2014) Metamorphic record of accretionary pro-cesses during the Neoarchaean: The Nuuk region, southern West Greenland. Precambrian Research, 242, 2238.CrossRefGoogle Scholar
Foley, S.F., Tiepolo, M. and Vannucci, R. (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417, 837840.CrossRefGoogle ScholarPubMed
Frei, D. and Gerdes, A. (2009) Accurate and precise in-situ zircon U-Pb age dating with high spatial resolution and high sample throughput by automated LA-SF-ICP-MS. Chemical Geology, 261, 261270.CrossRefGoogle Scholar
Friend, C.R.L. and Nutman, A.P. (2005) New pieces to the Archaean terrane jigsaw puzzle in the Nuuk region, southern West Greenland: steps in transforming a simple insight into a complex regional tectonothermal model. Journal of the Geological Society, 162, 147162.CrossRefGoogle Scholar
Friend, C.R.L., Nutman, A.P. and McGregor, V.R. (1988) Late Archean terrane accretion in the Godthab region, southern West Greenland. Nature, 335, 535538.CrossRefGoogle Scholar
Friend, C.R.L., Nutman, A.P., Baadsgaard, H. and Duke, MJ.M. (2008) The whole rock Sm-Nd ‘age’ for the 2825 Ma Ikkattoq gneisses (Greenland) is 800 Ma too young: Insights into Archaean TTG petrogenesis. Chemical Geology, 261, 6276.CrossRefGoogle Scholar
Garde, A.A. (2007) A mid-Archean island arc complex in the eastern Akia terrane, Godthabsfjord, southern West Greenland. Journal of the Geological Society of London, 164, 565579.CrossRefGoogle Scholar
Hoffmann, J.E., Miinker, C, Polat, A., Konig, S., Mezger, K. and Rosing, M.T. (2010) Highly depleted Hadean mantle reservoirs in the sources of early Archean arc-like rocks, Isua supracrustal belt, southern West Greenland. Geochimica et Cosmochimica Ada, 74, 72367260.CrossRefGoogle Scholar
Hoffmann, J.E., Miinker, C, Nteraa, T., Rosing, M.T., Garbe-Schonberg, D. and Svahnberg, H. (2011a) Mechanisms of Archean crust formation inferred from high-precision HFS systematics in TTGs. Geochimica et Cosmochimica Ada, 75, 41574178.CrossRefGoogle Scholar
Hoffmann, J.E., Miinker, C, Polat, A., Rosing, M.T. and Schulz, T. (20116) Origin of decoupled Hf-Nd isotope compositions in Eoarchean rocks from southern West Greenland. Geochimica et Cosmochimica Ada, 75, 66106628.CrossRefGoogle Scholar
Hoffmann, J.E., Svahnberg, H., Piazolo, S., Schersten, A. and Muenker, C. (2012) The geodynamic evolution of Mesoarchean anorthosite complexes inferred from the Naajat Kuuat Complex, southern West Greenland. Precambrian Research, 196, 149170.CrossRefGoogle Scholar
Hollis, J.A. (editor) (2005) Greenstone belts in the central Godthabsfjord region, southern West Greenland. Danmarks og Gronlands Geologiske Undersogelse rapport 2005/42. GEUS, Copenhagen, 215 pp.CrossRefGoogle Scholar
Jackson, M.P.A. (1984) Archaean structural styles in the Ancient Gneiss Complex of Swaziland, southern Africa. Pp. 118 in: Precambrian Tectonics Illustrated (A. Kroner and R. Greiling, editors). Schweizerbart, Stuttgart, Germany.Google Scholar
Jahn, B., Glikson, A.Y., Peucat, J.-J. and Hickman, A.H. (1981) REE geochemistry and isotopic data of Archaean silicic volcanics and granitoids from the Pilbara block, western Australia: implications for early crustal evolution. Geochimica et Cosmochimica Ada, 45, 16331652.CrossRefGoogle Scholar
Keulen, N., Schumacher, J.C., Nteraa, T., Kokfelt, T.F.,Google Scholar
Schersten, A., Szilas, K., van Hinsberg, V.J., Schlatter, D.M. and Windley, B.F. (2014) Meso-and Neoarchaean geological history of the Bjornesund and Ravns Storo Supracrustal Belts, southern West Greenland: Settings for gold enrich-ment and corundum formation. Precambrian Research, 254, 3658.Google Scholar
Kisters, A.F., van Hinsberg, V.J. and Szilas, K. (2012) Geology of an Archaean accretionary complex—The structural record of burial and return flow in the Tartoq Group of South West Greenland. Precambrian Research, 220, 107122.CrossRefGoogle Scholar
Martin, H. (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, 753756.2.0.CO;2>CrossRefGoogle Scholar
Martin, H. (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46, 411429.CrossRefGoogle Scholar
McGregor, V.R., Friend, C.R.L. and Nutman, A.P. (1991) The late Archaean mobile belt through Godthabsfjord, southern West Greenland: a con-tinent-continent collision zone. Bulletin of the Geological Society of Denmark, 39, 179197.Google Scholar
Mohan, M.R., Satyarayanan, M., Santosh, M., Sylvester, P.J., Tubrett, M. and Lam, R. (2012) Neoarchean suprasubduction zone arc magmatism in southern India: Geochemistry, zircon U-Pb geochronology and Hf isotopes of the Sittampundi Anothosite Complex. Gondwana Research, 23, 539557.CrossRefGoogle Scholar
Moyen, IF. and Martin, H. (2012) Forty years of TTG research. Lithos, 148, 312336.CrossRefGoogle Scholar
Moyen, J.F., Stevens, G., Kisters, A.F.M. and Belcher, R.W. (2007) TTG plutons of the Barberton granitoid-greenstone terrain, South Africa. Pp. 607667 in: Earth's Oldest Rocks (MJ. van Kranendonk, R.H. Smithies and Bennett, V.C. (editors). Developments in Precambrian Geology (Condie, K.C., Series editor), vol. 15. Elsevier, B.V., Amsterdam.CrossRefGoogle Scholar
Miinker, C, Weyer, S., Scherer, E. and Mezger, K. (2001) Separation of high field strength elements (Nb, Ta, Zr, Hf): and Lu from rock samples for MC-ICPMS measurements. Geochememistry Geophysics Geosystems 2 (G3), 2(12), doi:10.1029/ 2001GC000183.Google Scholar
Nreraa, T. and Schersten, A. (2008) New zircon ages from the Tasiusarsuaq terrane, southern West Greenland. Geological Survey of Denmark and Greenland Bulletin, 15, 7376.CrossRefGoogle Scholar
Naraa, T. (2011) Zircon U/Pb, Hf and O isotope systematics from the Archaean Basement in the Nuuk region, southern West Greenland: Constrains on the early evolution of the continental crust. Doctoral dissertation, Kobenhavns Universitet, Copenhagen.Google Scholar
Nreraa, T., Schersten, A., Rosing, M.T., Kemp, A.I.S., Hoffmann, J.E., Kokfelt, T.F. and Whitehouse, MJ. (2012) Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature, 485(7400), 627-630.Google Scholar
Nagel, T.J., Hoffmann, J.E. and Miinker, C. (2012) Generation of Eoarchean tonalite-trondhjemite-granodiorites series from thickened mafic arc crust. Geology, 40, 375378.CrossRefGoogle Scholar
Nutman, A.P. and Friend, C.R.L. (2007) Adjacent terranes with ca. 2715 and 2650 Ma high-pressure metamorphic assemblages in the Nuuk region of the North Atlantic Craton, southern West Greenland: Complexities of Neoarchean collisional orogeny. Precambrian Research, 155, 159203.CrossRefGoogle Scholar
Nutman, A.P., McGregor, V.R., Friend, C.R.L., Bennett, V.C. and Kinny, P.D., 1996. The Itsaq Gneiss Complex of southern West Greenland: the world's most extensive record of early crustal evolution (3900-3600 Ma). Precambrian Research, 78, 139.CrossRefGoogle Scholar
Nutman, A.P., Friend, C.R.L., Barker, S.L.L. and McGregor, V.R. (2004) Inventory and assess-ment of PalaeoArchean gneiss terrains and detrital zircons in southern West Greenland. Precambrian Research, 135, 281314.CrossRefGoogle Scholar
Ordonez-Calderon, J.C., Polat, A., Fryer, B.J., Gagnon, J.E., Raith, J.G. and Appel, P.W.U. (2008) Evidence for HFSE and REE mobility during calc-silicate metasomatism, Mesoarchean (c.3075 Ma) Ivisaartoq greenstone belt, southern West Greenland. Precambrian Research, 161, 317340.CrossRefGoogle Scholar
Ordonez-Calderon, J.C., Polat, A., Fryer, B.J., Appel, P.W.U., van Gool, J.A.M., Dilek, Y. and Gagnon, J.E. (2009) Geochemistry and geodynamic origin of the Mesoarchean Ujarassuit and Ivisaartoq greenstone belts, SW Greenland. Lithos, 113, 133157.CrossRefGoogle Scholar
Ordonez-Calderon, J.C., Polat, A., Fryer, B. and Gagnon, J.E. (2011) Field and geochemical char-acteristics of Mesoarchean to Neoarchean volcanic rocks in the Store green-stone belt, SW Greenland: evidence for accretion of intra-oceanic volcanic arcs. Precambrian Research, 184, 2442.CrossRefGoogle Scholar
Palme, H. and O'Neill, H.C. (2003) Compositional estimates of mantle composition. Pp. 138 in: The Mantle and Core, vol. 2 (Carlson, R.W., editor). Elsevier-Pergamon, Oxford, UK.Google Scholar
Pin, C. and Zalduegui, J.S. (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Analytica Chimica Ada, 339, 7989.CrossRefGoogle Scholar
Polat, A. and Hofmann, A.W. (2003) Alteration and geochemical patterns in the 3.7—3.8 Ga Isua greenstone belt, West Greenland. Precambrian Research, 126, 197218.CrossRefGoogle Scholar
Polat, A., Hofmann, A.W. and Rosing, M.T. (2002) Boninite-like volcanic rocks in the 3.7—3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184, 231254.CrossRefGoogle Scholar
Polat, A., Appel, P.W., Frei, R., Pan, Y., Dilek, Y., Ordonez-Calderon, J.C. and Raith, J.G. (2007) Field and geochemical characteristics of the Mesoarchean (∼ 3075 Ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in supra-subduction oceanic crust. Gondwana Research, 11, 6991.CrossRefGoogle Scholar
Polat, A., Frei, R., Schersten, A. and Appel, P.W. (2010) New age (ca. 2970 Ma), mantle source composition and geodynamic constraints on the Archean Fiskentesset anorthosite complex, SW Greenland. Chemical Geology, 277, 120.CrossRefGoogle Scholar
Rapp, R.P. and Watson, E.B. (1995) Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36, 891931.CrossRefGoogle Scholar
Rehnstrom, E.F. 2011. Geological Map of Greenland 1:100000, Kapisillit 64 V.2 Syd. Geological Survey of Denmark and Greenland, Copenhagen.Google Scholar
Scherer, E., Miinker, C. and Mezger, K. (2001) Calibration of the lutetium—hafnium clock. Science, 293, 683687.CrossRefGoogle ScholarPubMed
Schersten, A., Stendal, H. and Na;raa, T. (2008) Geochemistry of greenstones in the Tasiusarsuaq terrane, southern West Greenland. Geological Survey of Denmark and Greenland Bulletin, 15, 6972.CrossRefGoogle Scholar
Schumacher, J.C, van Hinsberg, V.J. and Keulen, N. (2011) Metamorphism in supracrustal and ultramafic rocks in southern West Greenland and South-West Greenland 64.-61.5° N. Danmarks og Gronlands Geologiske Undersogelse Rapport 2011/06. GEUS, Copenhagen, 29 pp.Google Scholar
Soderlund, U., Patchett, P.J., Vervoort, J.D. and Isachsen, C.E. (2004). The 176 Lu decay constant determined by Lu—Hf and U—Pb isotope systema-tics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219, 311324.CrossRefGoogle Scholar
Souders, A.K., Sylvester, P.J. and Myers, J.S. (2013) Mantle and crustal sources of Archean anorthosite: a combined in-situ study of Pb-Pb and Lu-Hf in zircon. Contributions to Mineralogy and Petrology, 165, 124.CrossRefGoogle Scholar
Svahnberg, H. (2012) Deformation and chemical signatures of anorthosites—Examples from southern West Greenland and south-central Sweden. Meddelanden fran Stockholms universitets Institution for geologiska vertenskaper No. 340. Doctoral Thesis, Stockholm University, Sweden.Google Scholar
Szilas, K., van Hinsberg, V.J., Kisters, A.F., Kokfelt, T.F., Schersten, A. and Windley, B.F. (2011) Remnants of Mesoarchaean oceanic crust in the Tartoq Group, South-West Greenland. Geological Survey of Denmark and Greenland Bulletin, 23, 5760.CrossRefGoogle Scholar
Szilas, K., Hoffmann, J.E., Schersten, A., Rosing, M.T., Windley, B.F., Kokfelt, T.F. and Miinker, C. (2012a) Complex calc-alkaline volcanism recorded in Mesoarchaean supracrustal belts north of Frederikshab Isblink, southern West Greenland: Implications for subduction zone processes in the early Earth. Precambrian Research, 208, 90123.CrossRefGoogle Scholar
Szilas, K., Nteraa, T., Schersten, A., Stendal, H., Frei, R., van Hinsberg, VJ. and Rosing, M.T. (20126) Origin of Mesoarchaean arc-related rocks with boninite/komatiite affinities from southern West Greenland. Lithos, 144, 2439.Google Scholar
Szilas, K., Hoffmann, J.E., Schersten, A., Kokfelt, T.F. and Miinker, C. (2013a) Archaean andesite petrogenesis: Insights from the GrEedefjord Supracrustal Belt, southern West Greenland. Precambrian Research, 236, 115.CrossRefGoogle Scholar
Szilas, K., van Hinsberg, V.J., Kisters, A.F.M., Hoffmann, J.E., Windley, B.F., Kokfelt, T.F., Schersten, A., Frei, R., Rosing, M.T. and Miinker, C. (20136) Remnants of arc-related Mesoarchaean oceanic crust in the Tartoq Group of SW Greenland. Gondwana Research, 23, 436451.CrossRefGoogle Scholar
Szilas, K., van Hinsberg, V.J., Creaser, R.A. and Kisters, A.F.M (2014) The geochemical composition of serpentinites in the Mesoarchaean Tartoq Group, SW Greenland: Harzburgitic cumulates or melt-modified mantle? Lithos, 198-199, 103-116.CrossRefGoogle Scholar
Szilas, K, Kelemen, P.B. and Rosing, M.T. (2015) The petrogenesis of ultramafic rocks in the >3.7 Ga Isua supracrustal belt, southern West Greenland: Geochemical evidence for two distinct magmatic cumulate trends. Gondwana Research, 28, 565580.CrossRef3.7+Ga+Isua+supracrustal+belt,+southern+West+Greenland:+Geochemical+evidence+for+two+distinct+magmatic+cumulate+trends.+Gondwana+Research,+28,+565–580.>Google Scholar
Walton, BJ. (1976) Geological Map 1:50000 64 V.2 37b. Gronlands Geologiske Undersogelse, Copenhagen.Google Scholar
Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295304.CrossRefGoogle Scholar
Weyer, S., Miinker, C, Rehkamper, M. and Mezger, K. (2002) Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS. Chemical Geology, 187, 295313.CrossRefGoogle Scholar
Windley, B.F. and Garde, A.A. (2009) Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: Crustal growth in the Archaean with modern analogues. Earth Science Reviews, 93, 130.CrossRefGoogle Scholar
Yi, K, Bennett, V.C., Nutman, A.P. and Lee, S.R. (2014) Tracing Archaean terranes under Greenland's Icecap: U—Th—Pb—Hf isotopic study of zircons from melt-water rivers in the Isua area. Precambrian Research, 255, 900921.CrossRefGoogle Scholar
Supplementary material: PDF

Szilas et al. supplementary material

Appendix A

Download Szilas et al. supplementary material(PDF)
PDF 1.7 MB
Supplementary material: File

Szilas et al. supplementary material

Table 1

Download Szilas et al. supplementary material(File)
File 55.3 KB
Supplementary material: File

Szilas et al. supplementary material

Table 2

Download Szilas et al. supplementary material(File)
File 33.3 KB
Supplementary material: File

Szilas et al. supplementary material

Table 3

Download Szilas et al. supplementary material(File)
File 302.6 KB