Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T17:18:31.288Z Has data issue: false hasContentIssue false

The dissolution of simulant UK Ca/Zn-modified nuclear waste glass: Insight into Stage III behavior

Published online by Cambridge University Press:  27 January 2020

Adam J. Fisher*
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, S1 3JD, UK
Mike T. Harrison
Affiliation:
National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG, UK
Neil C. Hyatt
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, S1 3JD, UK
Russell J. Hand
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, S1 3JD, UK
Claire L. Corkhill
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, S1 3JD, UK
Get access

Abstract

The dissolution of the United Kingdom’s vitrified high-level-waste simulant, CaZn MW28, was investigated following the Product Consistency Test-B protocol for 112 d at 90 °C and in ultra-high-quality water. Residual rate dissolution (stage II) and rate resumption (stage III), after 28 d, was observed. Thermodynamic modelling suggested that solutions were saturated with respect to Mg- and Zn-bearing phases, and the presence of Mg- and Zn-smectite clays was tentatively observed. The formation of these phases was concurrent with a significant increase in the dissolution rate, similar to Stage III behavior seen in other nuclear waste simulant glass materials, indicating that the addition of Mg and Zn to high-level-waste glass (7.3 wt. % combined) significantly influences the dissolution rate.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Harrison, M. T. and Brown, G. C.. Mat. Let. 221, 154-156 (2018).CrossRefGoogle Scholar
Dunnett, B. F., Gribble, N. R., Short, R. and Turner, E.. Glass. Tech.: Eur. J. Glass Sci. Tech. 53 (4), 166-171 (2012).Google Scholar
Short, R.. Proc. Mater. Sci. 7, 93-100 (2014).CrossRefGoogle Scholar
Matlack, et al. Sci. Bas. Nuc. Was. Man. XXII, Paper 9.55, Mater. Res. Soc. Fall Meeting (1998).Google Scholar
Gin, S., Frugier, P., Jollivert, P., Brugier, F. and Curti, E.. Int. J. App. Gla. Sci. 4, [4], 371-382 (2013).CrossRefGoogle Scholar
Jantzen, C. M., Lee, W. E. and Ojovan, M. I., “Radioactive waste conditioning, immobilisation, and encapsulation processes and technologies: Overview and advances,” In Radioactive waste management and contaminated site clean-up: Processes, technologies and international experiences, Lee, W. E., Ojovan, M. I. and Jantzen, C. M., Eds. Cambridge: Woodhead, 2013, pp. 171-272 (2013).CrossRefGoogle Scholar
Utton, C. A., Hand, R. J., Bingham, P. A., Hyatt, N. C., Swanton, S. W. and Williams, S. J.. J.Nuc.Mat. 435, 112-122, (2013).CrossRefGoogle Scholar
Aréna, H.. Rébiscoul, D., Podor, R., Garcès, E., Cabie, M., Mestre, J. –P. and Godon, N.. Geo. et Cos. Acta. 239, 420-445 (2018).CrossRefGoogle Scholar
Chave, T., Frugier, P., Gin, S. and Ayral, A.. Geo.Chim.Act. 75, 4125-4139, (2011).Google Scholar
Corkhill, C. L., Cassingham, N. J., Heath, P. G. and Hyatt, N. C.. Int. J. App. Gla. Sci. 4, [4], 341-356 (2013).CrossRefGoogle Scholar
Muller, I. S., Ribet, S., Pegg, I., Gin, S. and Frugier, P.. Cer. Trans. 176, 191-199, (2006).Google Scholar
Zhang, H., Corkhill, C. L., Heath, P. G., Hand, R. J., Stennett, M. C., Hyatt, N. C.. J. Nuc. Mat. 462 ,321-328 (2015).CrossRefGoogle Scholar
ASTM C1285-14, Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT), ASTM International, West Conshohocken, PA, (2014).Google Scholar
Harrison, M.T.. Proc. Mat. Sci. 7, 186-192 (2014).Google Scholar
Curti, E., Crovisier, J. L., Morvan, G. and Karpoff, Am. M.. App. Geochem. 21, 1152-1168 (2006).CrossRefGoogle Scholar
Thien, B. M. J., Godon, N., Ballestero, A., Gin, S. and Ayral, A.. J.Nuc.Mat. 427, 297-310, (2012).CrossRefGoogle Scholar
Fleury, B., Godon, N., Ayral, A. and Gin, S.. J.Nuc.Mat. 442, 17-28, (2013).CrossRefGoogle Scholar
Aréna, H., Godon, N., Rébiscoul, D., Podor, R., Garcès, E., Cabie, M. and Mestre, J.–P.. J.Nuc.Mat. 470, 55-67, (2016).CrossRefGoogle Scholar