Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-11T10:24:23.040Z Has data issue: false hasContentIssue false

Electronic Properties of CdTe/CdS Solar Cells as Influenced by a Buffer Layer

Published online by Cambridge University Press:  28 January 2016

Y. G. Fedorenko*
Affiliation:
Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, Chadwick Building, University of Liverpool, Liverpool L69 7ZF, UK
J. D. Major
Affiliation:
Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, Chadwick Building, University of Liverpool, Liverpool L69 7ZF, UK
A. Pressman
Affiliation:
Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, Chadwick Building, University of Liverpool, Liverpool L69 7ZF, UK
L. Phillips
Affiliation:
Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, Chadwick Building, University of Liverpool, Liverpool L69 7ZF, UK
K. Durose
Affiliation:
Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, Chadwick Building, University of Liverpool, Liverpool L69 7ZF, UK
Get access

Abstract

We considered modification of the defect density of states in CdTe as influenced by a buffer layer in ZnO(ZnS, SnSe)/CdS/CdTe solar cells. Compared to the solar cells employing ZnO buffer layers, implementation of ZnSe and ZnS resulted in the lower net ionized acceptor concentration and the energy shift of the dominant deep trap levels to the midgap of CdTe. The results clearly indicated that the same defect was responsible for the inefficient doping and the formation of recombination centers in CdTe. This observation can be explained taking into account the effect of strain on the electronic properties of the grain boundary interface states in polycrystalline CdTe. In the conditions of strain, interaction of chlorine with the grain boundary point defects can be altered.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cavallini, A., Fraboni, B., Dusi, W., Auricchio, N., Chirco, P., Zanarini, M., Siffert, P., Fougeres, P., Nuclear Instruments and Methods in Physics Research A 476, 770 (2002).Google Scholar
Rance, W. L., Burst, J. M., Meysing, D. M., Wolden, C. A., Reese, M. O., Gessert, T. A., Metzger, W. K., Garner, S., Cimo, P., and Barnes, T. M., Appl. Phys. Lett. 104, 143903 (2014).CrossRefGoogle Scholar
Zweibel, K., Science 328, 699 (2010).CrossRefGoogle Scholar
Visoly-Fisher, I., Cohen, S.R., Gartsman, K., Ruzin, A., and Cahen, D., Advanced Func. Mater. 16, 649 (2006).Google Scholar
Zhang, L., Da Silva, J. L. F., Li, J., Yan, Y., Gessert, T. A., and Wei, S.-H., Phys. Rev. Lett. 101, 155501 (2008).Google Scholar
Proskuryakov, Y. Y., Durose, K., Taele, B. M., Welch, G. P., and Oelting, S., J. Appl. Phys. 101, 014505 (2007).Google Scholar
Lourenço, M. A., Lek Ng, W., Homewood, K. P., and Durose, K., Appl. Phys. Lett. 75, 277 (1999).Google Scholar
Agrinskaya, N.V., Matveev, O.A., Revue de Physique Appliquee 12, 235 (1977).Google Scholar
Regan, W., Byrnes, S., Gannett, W., Ergen, O., Vazquez-Mena, O., Wang, F., and Zettl, A., Nano Lett. 12(8), 4300 (2012).Google Scholar
Roussillon, Y., Giolando, D. M., Karpov, V. G., Shvydka, D., and Compaan, A. D., Appl. Phys. Lett. 85, 3617 (2004).Google Scholar
Major, J. D., Treharne, R. E., Phillips, L. J., Durose, K., Nature 511, 334 (2014).Google Scholar
Walter, T., Herberholz, R., Müller, C., and Schock, H. W., J. Appl. Phys. 80, 4411 (1996).Google Scholar
Werner, J. H., Appl. Phys. A 47, 291 (1988).Google Scholar
Williams, B. L., Major, J. D., Bowen, L., Keuning, W., Creatore, M., and Durose, Ken, Adv. Energy Mater. 1500554 (2015).Google Scholar
Castaldini, A., Cavallini, A., Fraboni, B., Fernandez, P., and Piqueras, J., J. Appl. Phys. 83, 2121 (1998).CrossRefGoogle Scholar
Treharne, R. E., Phillips, L. J., Durose, K., Weerakkody, A., Mitrovic, I. Z., and Hall, S., J. Appl. Phys. 115, 063505 (2014).Google Scholar
Roberts, G. G. and Schmidlin, F. W., Phys. Rev. 180, 785 (1969).Google Scholar
Long, Qi, Dinca, S. A., Schiff, E. A., Yu, M., and Theil, J., Appl. Phys. Lett. 105, 042106 (2014).Google Scholar
Simonds, B. J., Misra, S., Paudel, N., Vandewal, K., Salleo, A., Ferekides, C., Scarpulla, M. A., Proc. of SPIE 9180, 91800F (2014).Google Scholar
Medvid, A., Hatanaka, Y., Korbutjak, D., Fedorenko, L., Krilyuk, S., Snitka, V., Appl. Surf. Sci. 197–198 124 (2002).Google Scholar