Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-05T02:18:47.783Z Has data issue: false hasContentIssue false

Fabrication and Characterization of Multiferroic Al0.5Fe1.5O3 Epitaxial Thin Films

Published online by Cambridge University Press:  19 February 2019

Badari Narayana Aroor Rao*
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Japan
Shintaro Yasui
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Japan
Tsukasa Katayama
Affiliation:
Department of Chemistry, The University of Tokyo, Japan
Mitsuru Itoh
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Japan
Get access

Abstract

Single-phase multiferroic materials have attracted considerable attention among scientists, due to the strong drive in industry towards device miniaturization, addition of new functionalities, etc. Currently, most of the discovered materials have at-least one ferroic order active only at low temperatures, thereby hindering their induction into practical devices. κ-Al2O3-type AlxFe2-xO3 (x-AFO) oxides belong to a new class of metastable multiferroic compounds (space group: Pna21), with relatively high Curie temperatures. The current work investigates the effect of thin film deposition conditions on the ferroelectric and ferrimagnetic properties of Al0.5Fe1.5O3 (0.5-AFO). Substrate temperature and oxygen partial pressure during deposition were found to be the critical parameters in obtaining high quality films. Optimizing the deposition conditions of 0.5-AFO enabled observation of both ferroelectricity and ferrimagnetism at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Eerenstein, W., Mathur, N.D., and Scott, J.F., Nature 442, 759 (2006).CrossRefGoogle Scholar
Ramesh, R. and Spaldin, N.A., Nat Mater 6, 21 (2007).CrossRefGoogle Scholar
Scott, J.F., Nature Materials 6, 256 (2007).CrossRefGoogle Scholar
Nan, T. and Sun, N.X., in Composite Magnetoelectrics, edited by Srinivasan, G., Priya, S., and Sun, N.X. (Woodhead Publishing, 2015), p. 329356.CrossRefGoogle Scholar
Fiebig, M., Lottermoser, T., Meier, D., and Trassin, M., Nature Reviews Materials 1, 16046 (2016).CrossRefGoogle Scholar
Dong, S., Liu, J.-M., Cheong, S.-W., and Ren, Z., Advances in Physics 64, 519 (2015).CrossRefGoogle Scholar
Zhang, W., Ramesh, R., MacManus-Driscoll, J.L., and Wang, H., MRS Bulletin 40, 736 (2015).CrossRefGoogle Scholar
Gich, M., Frontera, C., Roig, A., Taboada, E., Molins, E., Rechenberg, H.R., Ardisson, J.D., Macedo, W.A.A., Ritter, C., Hardy, V., Sort, J., Skumryev, V., and Nogués, J., Chem. Mater. 18, 3889 (2006).CrossRefGoogle Scholar
Gich, M., Gazquez, J., Roig, A., Crespi, A., Fontcuberta, J., Idrobo, J.C., Pennycook, S.J., Varela, M., Skumryev, V., and Varela, M., Appl. Phys. Lett. 96, 112508 (2010).CrossRefGoogle Scholar
Saha, R., Shireen, A., Shirodkar, S.N., Waghmare, U.V., Sundaresan, A., and Rao, C.N.R., Solid State Communications 152, 1964 (2012).CrossRefGoogle Scholar
Hamasaki, Y., Shimizu, T., Taniguchi, H., Taniyama, T., Yasui, S., and Itoh, M., Appl. Phys. Lett. 104, 082906 (2014).CrossRefGoogle Scholar
Gich, M., Fina, I., Morelli, A., Sánchez, F., Alexe, M., Gàzquez, J., Fontcuberta, J., and Roig, A., Adv. Mater. 26, 4645 (2014).CrossRefGoogle Scholar
Song, S., Jang, H.M., Lee, N.-S., Son, J.Y., Gupta, R., Garg, A., Ratanapreechachai, J., and Scott, J.F., NPG Asia Materials 8, e242 (2016).CrossRefGoogle Scholar
Katayama, T., Yasui, S., Hamasaki, Y., Shiraishi, T., Akama, A., Kiguchi, T., and Itoh, M., Advanced Functional Materials 28, 1704789 (2017).CrossRefGoogle Scholar
Xu, K., Feng, J.S., Liu, Z.P., and Xiang, H.J., Phys. Rev. Applied 9, 044011 (2018).CrossRefGoogle Scholar
Santos, G.M., Catellani, I.B., Santos, I.A., Guo, R., Bhalla, A.S., Padilha, J.E., and Cótica, L.F., Scientific Reports 8, 6420 (2018).CrossRefGoogle Scholar
Hamasaki, Y., Shimizu, T., Yasui, S., Shiraishi, T., Akama, A., Kiguchi, T., Taniyama, T., and Itoh, M., Journal of Applied Physics 122, 015301 (2017).CrossRefGoogle Scholar
Stoeffler, D., J. Phys.: Condens. Matter 24, 185502 (2012).Google Scholar
Song, S., Jang, H.M., Lee, N.-S., Son, J.Y., Gupta, R., Garg, A., Ratanapreechachai, J., and Scott, J.F., NPG Asia Materials 8, e242 (2016).CrossRefGoogle Scholar
Fähler, S., Störmer, M., and Krebs, H.U., Applied Surface Science 109–110, 433 (1997).CrossRefGoogle Scholar
Jaffe, J.E., Droubay, T.C., and Chambers, S.A., Journal of Applied Physics 97, 073908 (2005).CrossRefGoogle Scholar