Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T21:18:40.512Z Has data issue: false hasContentIssue false

Growth of Perovskite Nanorods from PbS Quantum Dots

Published online by Cambridge University Press:  13 February 2018

José Maria C. da Silva Filho*
Affiliation:
“Gleb Wathagin” Institute of Physics, State University of Campinas, Campinas, SP, Brazil
Francisco C. Marques
Affiliation:
“Gleb Wathagin” Institute of Physics, State University of Campinas, Campinas, SP, Brazil
Get access

Abstract

Organolead iodide perovskites, CH3NH3PbI3, have attracted the attention of researchers around the world due to their optical and electrical properties. Their main characteristics include, direct band-gap (1.4 to 3.0 eV), large absorption coefficient in the visible spectrum, long carrier diffusion length and ambipolar charge transport. Aside that, perovskite thin films can be produced with low cost and are compatible with large-scale manufacture. Perovskite thin films have been synthesized mainly by spin-coating technique and thermal evaporation, which can be executed in one or two steps. Aiming to increase the light absorption, nanostructured perovskite thin films are also under intense study, since the nanostructures can absorb more light than a flat film. Thus, in this work, we reported the synthesis of perovskite (CH3NH3PbI3) nanorods by means of conversion of lead sulphide quantum dots (PbSQD). The perovskite nanorods were grown by exposing the PbSQD to a highly concentrated iodine atmosphere and then dipping the resulting film in methylammonium iodide (CH3NH3I) solution. The first step converts completely the PbSQD into lead iodide (PbI2) nanowires, ≈50 µm long and ≈200 nm diameter, through substitution of sulphur by iodine atoms and subsequent aggregation of the particles. The later step converts the PbI2 nanowires in perovskite nonorods (≈5 µm long and ≈400 nm diameter). The perovskite nanorods present a regular geometry along all its length. A preferential alignment of nanorods to the substrate plane was observed. The preliminary results show that we can control the size of nanorods through exposition time of PbSQD to iodine, which change the size of PbI2 nanowire as well. The conversion process was studied by x-ray diffraction, optical absorption, photoluminescence and scanning electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Patra, M. K., Manoth, M., Singh, V. K., Siddaramana Gowd, G., Choudhry, V. S., Vadera, S. R., and Kumar, N., J. Lumin. 129, 320 (2009).CrossRefGoogle Scholar
Shalom, M., Ruhle, S., Hod, I., Yahav, S., and a Zaban, , J. Am. Chem. Soc. 131, 9876 (2009).Google Scholar
Crisp, R. W., Kroupa, D. M., Marshall, A. R., Miller, E. M., Zhang, J., Beard, M. C., and Luther, J. M., Sci. Rep. 5, 9945 (2015).Google Scholar
Hines, M. A. and Scholes, G. D., Adv. Mater. 15, 1844 (2003).Google Scholar
Murray, C. B., Kagan, C. R., and Bawendi, M. G., Annu. Rev. Mater. Sci. 30, 545 (2000).CrossRefGoogle Scholar
Dasgupta, N. P., Lee, W., and Prinz, F. B., Chem. Mater. 21, 3973 (2009).CrossRefGoogle Scholar
Dasgupta, N. P., Jung, H. J., Trejo, O., McDowell, M. T., Hryciw, A., Brongersma, M., Sinclair, R., and Prinz, F. B., Nano Lett. 11, 934 (2011).Google Scholar
Machol, J. L., Wise, F. W., Patel, R. C., and Tanner, D. B., Phys. Rev. B 48, 2819 (1993).Google Scholar
Yang, Z., Voznyy, O., Liu, M., Yuan, M., Ip, A. H., Ahmed, O. S., Levina, L., Kinge, S., Hoogland, S., and Sargent, E. H., ACS Nano 9, 12327 (2015).Google Scholar
De Iacovo, A., Venettacci, C., Colace, L., Scopa, L., and Foglia, S., Sci. Rep. 6, 37913 (2016).CrossRefGoogle Scholar
Yuan, M., Liu, M., and Sargent, E. H., Nat. Energy 1, 16016 (2016).Google Scholar
Kim, Y., Yassitepe, E., Voznyy, O., Comin, R., Walters, G., Gong, X., Kanjanaboos, P., Nogueira, A. F., and Sargent, E. H., ACS Appl. Mater. Interfaces 7, 25007 (2015).Google Scholar
Fu, P., Shan, Q., Shang, Y., Song, J., Zeng, H., Ning, Z., and Gong, J., Sci. Bull. 62, 369 (2017).Google Scholar
Im, J.-H., Luo, J., Franckevičius, M., Pellet, N., Gao, P., Moehl, T., Zakeeruddin, S. M., Nazeeruddin, M. K., Grätzel, M., and Park, N.-G., Nano Lett. 15, 2120 (2015).Google Scholar
Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., Gustafsson, M. V., Trinh, M. T., Jin, S., and Zhu, X.-Y., Nat. Mater. 14, 636 (2015).Google Scholar
da Silva Filho, J. M. C., Ermakov, V. A., Bonato, L. G., Nogueira, A. F., and Marques, F. C., MRS Adv. 2, 841 (2017).Google Scholar
Chaudhuri, T. K. and Acharya, H. N., Mater. Res. Bull. 17, 279 (1982).Google Scholar
da Silva Filho, J. M. C., Ermakov, V. A., and Marques, F. C., Sci. Rep. 8, 1563 (2018).CrossRefGoogle Scholar
Ummadisingu, A., Steier, L., Seo, J.-Y. Y., Matsui, T., Abate, A., Tress, W., and Grätzel, M., Nature 545, 208 (2017).Google Scholar