Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-10-04T18:18:12.845Z Has data issue: false hasContentIssue false

High aspect ratio germanium nanowires obtained by dry etching

Published online by Cambridge University Press:  24 February 2016

Kevin Guilloy*
Affiliation:
Université Grenoble Alpes, INAC-SP2M, SiNaPS, F-38000 Grenoble, France CEA, INAC-SP2M, SiNaPS, F-38000 Grenoble, France
Nicolas Pauc
Affiliation:
Université Grenoble Alpes, INAC-SP2M, SiNaPS, F-38000 Grenoble, France CEA, INAC-SP2M, SiNaPS, F-38000 Grenoble, France
Alban Gassenq
Affiliation:
Université Grenoble Alpes, INAC-SP2M, SiNaPS, F-38000 Grenoble, France CEA, INAC-SP2M, SiNaPS, F-38000 Grenoble, France
Vincent Calvo
Affiliation:
Université Grenoble Alpes, INAC-SP2M, SiNaPS, F-38000 Grenoble, France CEA, INAC-SP2M, SiNaPS, F-38000 Grenoble, France
Get access

Abstract

We present here a reactive ion etching recipe to fabricate germanium nanowires. We used a combination of Cl2, N2 and O2 and studied the influence of both the gas pressure and the O2 mass flow on the morphology of the nanowires. 5 µm long nanowires with an aspect ratio of 20 are demonstrated with smooth surfaces and a tapering below 20 nm/µm. We also show that both gold and aluminum can be used as hard mask; the latter achieving a selectivity with germanium above 100.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M., Nano Lett. 3, 149 (2003).CrossRefGoogle Scholar
Rosaz, G., Salem, B., Pauc, N., Gentile, P., Potie, A., Baron, T., Microelectronic Engineering 88, 3312 (2011).Google Scholar
Yan, R., Gargas, D., Yang, P., Nat Photon. 3, 569 (2009).CrossRefGoogle Scholar
Cui, Y., Wei, Q., Park, H., Lieber, C.M., Science 293, 1289 (2001).Google Scholar
Thissandier, F., Le Compte, A., Crosnier, O., Gentile, P., Bidan, G., Hadji, E., Brousse, T., Sadki, S., Electrochemistry Communications 25, 109 (2012).Google Scholar
Guilloy, K., Pauc, N., Gassenq, A., Gentile, P., Tardif, S., Rieutord, F., Calvo, V., Nano Lett. 15, 2429 (2015).Google Scholar
Ostroborodova, V.V., Soviet Phys. Solid State 7, 484 (1965).Google Scholar
Monget, C., Schiltz, A., Joubert, O., Vallier, L., Guillermet, M., Tormen, B., J. Vac. Sci. Technol. B 16, 1833 (1998).CrossRefGoogle Scholar
Martin, M., Avertin, S., Chevolleau, T., Dhalluin, F., Ollivier, M., Baron, T., Joubert, O., Hartmann, J.M., J. Vac. Sci. Technol. B 31, 041806 (2013).CrossRefGoogle Scholar
Volatier, M., Duchesne, D., Morandotti, R., Arès, R., Aimez, V., Nanotechnology 21, 134014 (2010).Google Scholar
Williams, K.R., Gupta, K., Wasilik, M., J. Microelectromech. Syst. 12, 761 (2003).Google Scholar
Evertsson, J., Bertram, F., Zhang, F., Rullik, L., Merte, L.R., Shipilin, M., Soldemo, M., Ahmadi, S., Vinogradov, N., Carlà, F., Weissenrieder, J., Göthelid, M., Pan, J., Mikkelsen, A., Nilsson, J.O., Lundgren, E., Appl. Surf. Sci. 349, 826 (2015).Google Scholar