Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-11T02:22:45.221Z Has data issue: false hasContentIssue false

In-situ Formation of a Series of AgFeO2/γ-Fe2O3 Composites: Impact on Electrochemical Performance

Published online by Cambridge University Press:  08 January 2016

Jessica L. Durham
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A.
Kevin Kirshenbaum
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973-5000, U.S.A.
Esther S. Takeuchi*
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A. Brookhaven National Laboratory, Upton, NY 11973-5000, U.S.A. Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, U.S.A.
Amy C. Marschilok
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A. Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, U.S.A.
Kenneth J. Takeuchi*
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A. Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, U.S.A.
*
*corresponding author: kenneth.takeuchi.1@stonybrook.edu
Get access

Abstract

A paradigm for the synthetic manipulation of composition and crystallite size of bimetallic composites via a low-temperature, aqueous co-precipitation technique employing non-stoichiometric ratios of starting materials, AgNO3 and Fe(NO3)3, is introduced. In-situ formation of composites containing crystalline silver ferrite, AgFeO2, and nanocrystalline maghemite, γ-Fe2O3 is demonstrated and established by Raman spectroscopic and X-ray absorption analyses. As a cathode, the lowest silver content composites exhibited profoundly improved electrochemical performance, with reversible capacities approximately 100% higher relative to stoichiometric AgFeO2, and demonstrate the lowest capacity fade.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shannon, R.D., B Rogers, D., and Prewitt, C. T., Inorg. Chem. 10, 719 (1971).Google Scholar
Okamoto, S., Okamoto, S. I., and Ito, T., Acta Crytallogr. Sect. B: Struct. Sci. 28.6, 1774 (1972).CrossRefGoogle Scholar
Sauvage, F., Muñoz-Rojas, D., Poeppelmeier, K. R., and Casañ-Pastor, N., J. Solid State Chem. 182, 374 (2009).CrossRefGoogle Scholar
Farley, K. E., Marschilok, A. C., Takeuchi, E. S., and Takeuchi, K. J., Electrochem. Solid-State Lett. 15, A23 (2012).Google Scholar
Durham, J. L., Kirshenbaum, K., Takeuchi, E. S., Marschilok, A. C., and Takeuchi, K. J., Chem. Commun. 51, 5120 (2015).Google Scholar
Nagarajan, R. and Tomar, N., J. Solid State Chem. 182, 1283 (2009).Google Scholar
Murthy, Y. L. N., Rao, T. K., Viswanath, I. V. K., and Singh, R., J. Magn. Magn. Mater. 322, 2071 (2010).Google Scholar
Sheets, W. C., Mugnier, E., Barnabe, A., Marks, T. J., and Poeppelmeier, K. R., Chem. Mater. 18, 7 (2006).Google Scholar
Winchainchai, A., Dordor, P., Doumerc, J. P., Marquestaut, E., Pouchard, M., and Hagenmuller, P., J. Solid State Chem. 74, 126 (1988).Google Scholar
Clayton, J. E., Cann, D. P., and Ashmore, N., Thin Solid Films 411, 140 (2002).CrossRefGoogle Scholar
Shahriari, D. Y., Erdman, N., Huag, U. T. M., Zarzyczny, M. C., Marks, L. D., and Poeppelmeier, K. R., J. Phys. Chem. Solids 64, 1437 (2003).Google Scholar
Dar, M. I. and Shivashankar, S. A., RSC Adv. 4, 4105 (2014).CrossRefGoogle Scholar
Chaudhari, N. S., Warule, S. S., Muduli, S., Kale, B. B., Jouen, S., Lefez, B., Hannoyer, B., and Ogale, S. B., Dalton Trans. 40, 8003 (2011).Google Scholar
Lützenkirchen-Hecht, D., Wagner, R., Bieder, S., and Frahm, R., J. Phys.: Conf. Ser. 425, 132006 (2013).Google Scholar