Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-16T11:02:14.748Z Has data issue: false hasContentIssue false

Interfacial Electron Transfer Involving Vanadium and Graphene Quantum Dots for Redox Flow Battery

Published online by Cambridge University Press:  05 February 2018

L. Robarts
Affiliation:
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY14623, USA
K.S.V. Santhanam*
Affiliation:
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY14623, USA
*
*Corresponding author:ksssch@rit.edu
Get access

Abstract

Among energy storage devices, the redox flow batteries are important for variety of applications such as for grid storage. In this class of batteries a large number of redox couples have been examined in the past. The vanadium redox couple, although is attractive for this application, suffers from a) poor charge transfer characteristics b) electrode degradation and c) deteriorating performance. We wish to report here that all these deficiencies have been overcome by using a graphene quantum dot electrodes. This electrode has the advantage of large surface area, high electrical and thermal conductivity. The cell voltage of 1.5 V and power density of about 120 mW/cm2 and coulombic efficiency of 90% can be achieved as the redox couples, V(IV)/V(V) and V(III)/V(II) undergo fast electron transfer at the interface of the quantum dots and solution resulting in higher reversibility. The cyclic voltammetric experiments carried out with quantum dots in the solutions during the oxidation of V(IV) show enhanced currents, due to the movements of the dots which is conducive for power gain in the battery operation. The electrochemical degradation is absent with the quantum dot electrode. The charge/discharge cycles have been reproducible.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yang, Z., Zhang, J., Kintner-Meyer, M. C. W., Lu, X., Choi, D., Lemmon, J.P., and Liu, J., Chem. Rev. 111, 3577 (2011).CrossRefGoogle Scholar
Peng, C., Ning, G.H., Su, J., Zhong, G., Tang, W., Tian, B., Su, C., Yu, D., Zu, L., Yang, J., Ng, M., Hu, Y.S., Yang, Y., Armand, M. and Loh, K. P., Nature Energy 2, 17074 (2017).CrossRefGoogle Scholar
Weber, A.Z., Mench, M. M., Meyers, J.P., Ross, P. N., Gostick, J. T., Liu, Q., J Appl. Electrochem. 41, 113 (2011).Google Scholar
Leung, P., Shah, A.A., Sanz, L., Flox, C., Morante, J.R., X, Q., Mohamed, M.R., Ponce de Leo, C., Walsh, F.C., J. Power Sources 360, 243 (2017).CrossRefGoogle Scholar
Noack, J., Roznyatovskaya, N., Herr, T., Fischer, P., Angew. Chem. Int. Ed. 54, 9776 (2015).CrossRefGoogle Scholar
Zeng, Y., Zhao, T., Zhou, X., Wei, L., Jiang, H., J. Power Sources 330, 55 (2016).CrossRefGoogle Scholar
Zhao, Y., Ding, Y., Li, Y., Peng, L., Byon, H.R., Goodenough, J.B., Yu, G., Chem. Soc. Rev. 44, 7968 (2015).CrossRefGoogle Scholar
Pan, F., Wang, Q., Molecules 20, 20499 (2015).CrossRefGoogle Scholar
Chen, Y.W.D., Santhanam, K.S.V., Bard, A.J., Electrochem, J.. Soc. 128, 1460 (1981).Google Scholar
Dmello, R., Milshtein, J. D., Brushett, F. R., Smith, K. C., Journal of Power Sources 330, 261 (2016)CrossRefGoogle Scholar
Yang, Z.G., Zhang, J.L., Kintner-Meyer, M.C.W., Lu, X.C., Choi, D.W., Lemmon, J.P., Liu, J., Chem Rev. 111, 3579 (2011)CrossRefGoogle Scholar
Skyllas-Kazacos, M., Grossmith, F., J Electrochem Soc. 134, 2950 (1987)CrossRefGoogle Scholar
Skyllas-Kazacos, M., Rychcik, M., Robins, R.G., Fane, A.G., Green, M.A., J Electrochem Soc., 133, 1057 (1986)CrossRefGoogle Scholar
Skyllas-Kazacos, M., Rychcik, M., Robins, R.G., Fane, A.G. and Green, M.A., J Electrochem Soc., 133, 1057 (1986)CrossRefGoogle Scholar
Skyllas-Kazacos, M., Chakrabarti, M. H., Hajimolana, S. A., Mjalli, F. S., and Saleem, M., J. Electrochemical Society 158, R55R79 (2011)CrossRefGoogle Scholar
Bard, A.J. and Faulkner, L.R., Electrochemical Methods, Wiley, NJ (2001).Google Scholar
Liu, H., Cai, T., Song, Q., Yang, L., Xu, Q., Yan, C., Int. J. Electrochem. Sci. 8, 2515 (2013).CrossRefGoogle Scholar
Santhanam, K.S.V., Kandlikar, S., Valentina, M., Yang, Y., Electrochemical Process for Producing Graphene, Graphene oxide, Metal Composites, and Coated Substrates. U.S. Patent 20160017502 A1, January 21, 2016; Patent No. US 9,840,782 B2, December 12, 2017.Google Scholar
Jaikumar, A., Santhanam, K.S.V., Kandlikar, S., Raya, I.B.P. and Raghupathi, P., ECS Trans. 66 (30), 55(2015).CrossRefGoogle Scholar
Protich, Z., Santhanam, K. S. V., Jaikumar, A., Kandlikar, S. G., and Wong, P., J. Electrochem. Soc. 163 (6) E166E172 (2016)CrossRefGoogle Scholar
Dassisti, M., Cozzolino, G., Chimienti, M., Rizzuti, A., Mastrorilli, P., L’Abbate, P., International J. Hydrogen Energy 41, 16477(2016).CrossRefGoogle Scholar
Liu, M., Xiang, Z., Deng, H., Wan, K., Liu, Q., Piao, J., Zheng, Y., and Lianga, Z., J. Electrochem. Soc. 163 (10) H937 (2016)CrossRefGoogle Scholar
Sum, E. and Skyllas-Kazacos, M., J. Power Sources 15, 179 (1985).CrossRefGoogle Scholar
Wu, X. W., Yamamura, T., Ohta, S., Zhang, Q. X., Lv, F. C., Liu, C. M., Shirasaki, K., Satoh, I., Shikama, T., and Lu, D., J. Appl. Electrochem. 41, 1183 (2011).CrossRefGoogle Scholar
Yamamura, T., Watanabe, N., Yano, T., and Shiokawa, Y., J. Electrochem. Soc. 152, A830 (2005).CrossRefGoogle Scholar
Yoon, J.H., Byun, T.S., Strizak, J.P., Snead, L.L., J. Nuclear Materials 412, 315 (2011).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J.W. and Hone, J., Science 321,385(2008).CrossRefGoogle Scholar
Wu, X., Wang, J., Liu, S., Wu, X. and Li, S., Electrochimica Acta, 56, 10197 (2011).CrossRefGoogle Scholar
González, Z., Botas, C., Blanco, C., Santamaría, R., Granda, M., Álvarez, P., Menéndez, R., Journal of Power Sources 241 (2013) 349(2013).CrossRefGoogle Scholar
Kim, K.J., Park, M., Kim, Y., Kim, J., Dou, S. and Skyllas-Kazacos, M., J. Mater. Chem. A 3, 16913 (2015)CrossRefGoogle Scholar
Zhang, Y., Liu, L., Xi, J., Wu, Z., Qiu, X., Applied Energy 204, 373 (2017).CrossRefGoogle Scholar
Skyllas-Kazacos, M., Kazacos, M., J Power Sources 196, 8822 (2011).CrossRefGoogle Scholar
Protich, Z., Wong, P. and Santhanam, K.S.V., J. Power Sources 332, 337 (2016).CrossRefGoogle Scholar