Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-23T19:27:26.818Z Has data issue: false hasContentIssue false

Large Expansion of Operating Voltage Window in Polymer Based Flexible Solid State Supercapacitor

Published online by Cambridge University Press:  05 February 2018

Curtis White
Affiliation:
Center for Materials Science and Research, Norfolk State University, VA, 23504, USA
Tristan Skinner
Affiliation:
Center for Materials Science and Research, Norfolk State University, VA, 23504, USA
Kevin Santiago
Affiliation:
Electrical and Computer Engineering Dept. Tennessee State University, TN, 37209, USA
Sangram K. Pradhan*
Affiliation:
Center for Materials Science and Research, Norfolk State University, VA, 23504, USA
Messaoud Bahoura
Affiliation:
Center for Materials Science and Research, Norfolk State University, VA, 23504, USA
*
Get access

Abstract

Specific demand of lightweight and high efficient flexible energy unit is increased day by day for its integration into bendable electronics devices. Super-capacitor is one of the promising power unit to meet the current requirement. Flexible metal oxide and polypyrrole based flexible electrode materials are prepared using electrodeposition. The calculated specific capacitances of the devices shows 0.5 mill farad per gram. The super-capacitor is ultra-flexible, stable with operational voltage window expands from 0.8 to 2.5 V which can help to reduce the number of super-capacitor in series connection to obtain the same output. In this study, a conductive polymer can be coupled with MnO2 to improve capacitance and conductivity of a hybrid structure based on MnO2.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tao, J., Liu, N., Ma, W., Ding, L., Li, L., Su, J., and Gao, Y.. Sci Rep 3, 2286 (2013).CrossRefGoogle Scholar
Nguyen, B. H., and Nguyen, V. H., Nanoscience and Nanotechnology 7, 023002 (2016).Google Scholar
Fischer, A. E., Pettigrew, K. A., Rolison, D. R., Stroud, R. M., Long, J. W., Nano Lett. 7 (2), 281286 (2007).Google Scholar
Yu, G. H., Yu, G., Hu, L., Vosgueritchian, M., Wang, H., Xie, X., McDonough, J. R., Cui, X., Cui, Y., and Bao, Z., Nano Lett. 11 (7), 29052911 (2011).Google Scholar
Hu, L. B., Hu, L., Chen, W., Xie, X., Liu, N., Yang, Y., Wu, H., Yao, Y., Pasta, M., Alshareef, H. N., and Cui, Y, ACS Nano 5 (11), 89048913 2011(2011).Google Scholar
Liu, C, Yu, Z., Neff, D., Zhamu, A., and Jang, B. Z., Nano Lett. 10 (12), 48634868 (2010).Google Scholar
Khan, S., Lorenzelli, L., and Dahiya, R.S., IEEE Sensors Journal, 15, 31643185(2015).Google Scholar
Ostfeld, A. E., Deckman, I., Gaiward, A. M., LLochner, C. M. and Arias, A.C., Sci. Rept. 5, 9771, (2015)Google Scholar
Zhou, J., Yu, L., Liu, W., Zhang, X., Mu, W., Du, X., Zhang, Z. and Deng, Y., Sci. Rept. 5, 17858 (2015)Google Scholar
Imene, C., Sahari, A., and Zouaoui, A., Surf. Rev. Lett. 21, 1450082 (2014).Google Scholar
Elif, O., Aydin, G. O., Hacivelioglu, F., Beyaz, S. K., Yesilot, S., and Kihc, A., J. Mater. Scien. 48, 201212 (2013).Google Scholar
Sun, M., Lin, T., Cheng, G., Ye, F., and Yu, L., ,J. Nanomaterials 2014, ID 175924 (2014).Google Scholar
Zhang, A. Q., Xiao, Y.H., Lu, L. Z., Wang, L. Z., and Li, F., J. Appl.Poly. Scien. 128, 13271331 (2012).Google Scholar
Francisco, B. E., Jones, C. M., Lee, S. H., and Stoldt, C. R., Appl. Phys. Lett. 100, 103902 (2012).Google Scholar
Fan, Z.J., Yan, J., Wei, T., Zhi, L., Ning, G., Li, T., and Wei, F., Adv. Fun. Mater. 21, 23662375 (2011).Google Scholar
Yu, H., Wu, J., Fan, L., Xu, K., Zhong, X., Lin, Y., and Lin, J., Electro. Act. 56, 68816886 (2011).Google Scholar
Kang, Y. J., Chung, H., Han, C. H., and Kim, W., Nanotechnology 23, 065401 (2012).Google Scholar
Portet, C., Taberna, P.L., Simon, P., Flahaut, E., and Robert, C. L., Electro. Act. 50, 41744181 (2005).Google Scholar
Yanwu, Z, Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Su, D., Stach, E. A., and Ruoff, R. S., Science 332, 1537-1541 (2011).Google Scholar
Toupin, M., Brousse, T., Belanger, D., Chem. of Mater. 16, 31843190 (2004).Google Scholar
Whittingham, M. S., Mater. Res. Soc. 33, 411419 (2008).Google Scholar
Wang, D., Li, Y. X., Shi, Z., Qin, H. L., Wang, L., Pei, X. F., and Jin, J., Langmuir 26, 1440514408 (2010).Google Scholar
Song, K. T., Lee, J.Y., Kim, H. D., Kim, D.Y., Kim, S.Y., Kim, C.Y., Synth. Met. 110, 5763 (2000).Google Scholar
Yuan, L., Dai, J., Fan, X., Song, T., Tao, Y. T., Wang, K., Xu, Z., Zhang, J., Bai, X., Lu, P., Chen, J., Zhou, J. and Wang, Z. L., ACS Nano 5(5), 40074013 (2011).Google Scholar
Lin, S. C., Lu, Y. T., Chien, Y. A., Wang, J. A., You, T. H., Wang, Y. S., Lin, C. W., Ma, C. C.., C. C. Hu. J. Power Sources 362, 258269 (2017).Google Scholar
Poonguzhali, R., Shanmugam, N., Gobi, R., Kannadasan, N., Viruthagiri, G., Mater. Sci. Semi. Proc. 27, 553561 (2014).Google Scholar
Jie, H., Lina, S., Jie, M., Lina, W., Asian J. Chem. 26(18), 62796284 (2014).Google Scholar
Aphale, A., Maisuria, K., Mahapatra, M. K., Santiago, A., Singh, P., P. Patra Sci. Repot. 5, 14445 (2015).Google Scholar
Wei, Y., Han, G., Chang, Y. Z., Li, M., Xiao, Y., Zhou, H., Zhang, Y., Li, Y.. Appl. Sur. Sci. 387, 902911(2016).Google Scholar
Lang, X., Hirata, A., Fujita, T., Chen, M., Nat. Nanotechnology 6, 232236 (2011).Google Scholar
Hou, Y., Cheng, Y., Hobson, T., Liu, J., Nano Lett. 10 (7), 27272733 (2010).Google Scholar