Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-11T01:27:39.414Z Has data issue: false hasContentIssue false

Low Temperature Sequential Melting and Anion Retention in Simplified Low Activity Waste

Published online by Cambridge University Press:  27 January 2020

Emily T. Nienhuis
Affiliation:
Materials Science and Engineering Program, Washington State University, Pullman, WA
John S. McCloy*
Affiliation:
Materials Science and Engineering Program, Washington State University, Pullman, WA School of Mechanical and Materials Engineering, Washington State University, Pullman, WA
*
Get access

Abstract

This study seeks to understand the low temperature reactions of the salt phase that occur during the vitrification of Hanford Low Activity Waste (LAW). Salts (such as nitrates, sulfates, carbonates, halides, etc.) play a key role in these low temperature reactions as they sequentially melt, decompose, and volatilize during batch-to-glass conversion. To further understand these complex processes, simplified LAW melts containing oxyanion salts (sodium salts of carbonate, sulfate, and/or nitrate) and early melting glass formers (boric acid) have been evaluated using thermal analysis, infrared absorption spectroscopy, and X-ray diffraction. Results from this study indicate that the volatilization behavior of particular salts is influenced by the presence or absence of other salts. NaNO3 volatilization is decreased by the presence of Na2SO4. The addition of either Na2SO4 or NaNO3 to the system may enhance the volatilization of Na2CO3. In all cases, Na2SO4 was retained after melting and was often found to be in two different crystalline phases upon quenching.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Goles, R., Perez, J., MacIsaac, B., Siemer, D. and McCray, J., Test summary report INEEL sodium-bearing waste vitrification demonstration - RSM-01-1, Pacific Northwest National Laboratory, Richland, WA, PNNL-13522 (2001).10.2172/965672CrossRefGoogle Scholar
Li, H., Hrma, P. and Vienna, J.D. in Env. Issues Waste Manage. Tech. Ceram. Nucl. Ind. VI , edited by Spearing, D. R., Smith, G. L. and Putnam, R. L., (The American Ceramic Society, Westerville, OH 119, St. Louis, MO, 2000), pp. 237.Google Scholar
Hrma, P., Vienna, J. and Ricklefs, J. in Mat. Res. Soc. Symp. - Sci. Basis Nucl. Waste Manage. XXVI , edited by Finch, R. J. and Bullen, D. B., (Materials Research Society, Warrendale, PA 757, Boston, MA, 2002), pp. 147.Google Scholar
Hrma, P., Vienna, J., Buchmiller, W. and Ricklefs, J. in Env. Issues Waste Manage. Tech. Ceram. Nucl. Ind. IX - Ceram. Trans. , edited by Vienna, J. D. and Spearing, D. R., (The American Ceramic Society, Westerville, OH 155, Nashville, TN, 2003), pp. 93.Google Scholar
Pegg, I.L., Gan, H., Muller, I., McKeown, D. and Matlack, K.S., Summary of preliminary results on enhanced sulfate incorporation during vitrification of LAW feeds, Vitreous State Laboratory, the Catholic University of America, Washington, D.C., VSL-00R3630-1 (2000).Google Scholar
Jantzen, C.M., Smith, M.E. and Peeler, D.K. in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries X , edited by Vienna, J. D., Herman, C. C. and Marra, S., (The American Ceramic Society 168, Indianapolis, IN, 2004), pp. 141.Google Scholar
Xu, K., Hrma, P., Rice, J., Riley, B.J., Schweiger, M.J. and Crum, J.V., J. Non-Cryst. Solids 98, 3105 (2015).Google Scholar
Jin, T., Kim, D., Tucker, A.E., Schweiger, M.J. and Kruger, A.A., J. Non-Cryst. Solids 425, 28 (2015).10.1016/j.jnoncrysol.2015.05.018CrossRefGoogle Scholar
Vienna, J.D., Kim, D.S., Muller, I.S., Piepel, G.F., Kruger, A.A. and Jantzen, C., J. Amer. Ceram. Soc. 97, 3135 (2014).10.1111/jace.13125CrossRefGoogle Scholar
Haynes, W.M., CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data, 91st ed., (CRC Press, Boca Raton, 2009).Google Scholar
Bingham, P.A., Vaishnav, S., Forder, S.D., Scrimshire, A., Jaganathan, B., Rohini, J., Marra, J.C., Fox, K.M., Pierce, E.M., Workman, P. and Vienna, J.D., J. Alloys Compd. 695, 656 (2017).10.1016/j.jallcom.2016.11.110CrossRefGoogle Scholar
Mishra, R.K., Sudarsan, K.V., Sengupta, P., Vatsa, R.K., Tyagi, A.K., Kaushik, C.P., Das, D. and Raj, K., J. Amer. Ceram. Soc. 91, 3903 (2008).10.1111/j.1551-2916.2008.02773.xCrossRefGoogle Scholar
Tanaka, K., Naruse, H., Morikawa, H. and Marumo, F., Acta Crystallogr. B 47, 581 (1991).10.1107/S0108768191001891CrossRefGoogle Scholar
Hawthorne, F.C. and Ferguson, R.B., Can. Mineral. 13, 181 (1975).Google Scholar
Paul, G.L. and Pryor, A.W., Acta Crystallogr. B 28, 2700 (1972).10.1107/S0567740872006806CrossRefGoogle Scholar
Marezio, M., Plettinger, H.A. and Zachariasen, W.H., Acta Crystallogr. 16, 594 (1963).10.1107/S0365110X63001596CrossRefGoogle Scholar
Frech, R., Wang, E.C. and Bates, J.B., Spectrochim. Acta A 36, 915 (1980).10.1016/0584-8539(80)80044-4CrossRefGoogle Scholar
Thieme, A., Möncke, D., Limbach, R., Fuhrmann, S., Kamitsos, E.I. and Wondraczek, L., J. Non-Cryst. Solids 410, 142 (2015).10.1016/j.jnoncrysol.2014.11.029CrossRefGoogle Scholar
Lai, Y.M., Liang, X.F., Yang, S.Y., Wang, J.X. and Zhang, B.T., J. Mol. Struct. 1013, 134 (2012).10.1016/j.molstruc.2012.01.025CrossRefGoogle Scholar
Nakagawa, I. and Walter, J.L., J. Chem. Phys. 51, 1389 (1969).10.1063/1.1672186CrossRefGoogle Scholar
Lenoir, M., Grandjean, A., Dussossoy, J.-L. and Neuville, D., Sulphate Incorporation in Borosilicate Glasses and Melts: a Kinetic Approach, 2008).Google Scholar
Manabe, S. and Kitamura, K., J. Non-Cryst. Solids 80, 630 (1986).10.1016/0022-3093(86)90456-4CrossRefGoogle Scholar
Klouzek, J., Ullrich, J., Jiricka, M., Rohanova, D. and Tonthat, T., Ceram. Silik. 44, 61 (2000).Google Scholar
Rasmussen, S., Jorgensen, J. and Lundtoft, B., J. Appl. Crystallogr. 29, 42 (1996).10.1107/S0021889895008818CrossRefGoogle Scholar
McKeown, D.A., Muller, I.S., Gan, H., Pegg, I.L. and Kendziora, C.A., J. Non-Cryst. Solids 288, 191 (2001).10.1016/S0022-3093(01)00624-XCrossRefGoogle Scholar
Ganguli, M. and Rao, K.J., J. Phys. Chem. B 103, 920 (1999).10.1021/jp982930zCrossRefGoogle Scholar
Bingham, P.A. and Hand, R.J., Mat. Res. Bull. 43, 1679 (2008).10.1016/j.materresbull.2007.07.024CrossRefGoogle Scholar
Kamitsos, E.I. and Karakassides, M.A., Phys. Chem. Glasses 30, (1989).Google Scholar