Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-27T14:42:34.577Z Has data issue: false hasContentIssue false

Microstructure and Mechanical Properties of Copper, Nickel and Ternary Alloys Cu-Ni-Zr Obtained by Mechanical Alloying and Hot Pressing

Published online by Cambridge University Press:  05 September 2017

C. Martínez*
Affiliation:
Escuela de Diseño, Universidad Adolfo Ibáñez, Diagonal Las Torres2640, Santiago, Chile
F. Briones
Affiliation:
Departamento de Metalurgia, Universidad Técnica Federico Santa María, Av. España1680, Valparaíso, Chile
P. Rojas
Affiliation:
Escuela de Diseño, Universidad Adolfo Ibáñez, Diagonal Las Torres2640, Santiago, Chile
S. Ordoñez
Affiliation:
Departamento de Metalurgia, Universidad de Santiago de Chile, Av. Libertador Bernardo O`Higgins3363, Santiago de Chile.
C. Aguilar
Affiliation:
Departamento de Metalurgia, Universidad Técnica Federico Santa María, Av. España1680, Valparaíso, Chile
D. Guzmán
Affiliation:
Departamento de Metalurgia, Universidad de Atacama, Av. Copayapu 485, Copiapó, Chile
Get access

Abstract

Elemental powders of Cu and Ni, binary alloys (Cu-Ni and Cu-Zr) and ternary alloy (Cu-Ni-Zr) obtained by mechanical alloying and uniaxial compaction hot microstructure and mechanical properties were investigated. The alloys studied were: pure Cu, pure Ni, binary alloys (Cu-Ni; Cu-Zr) and ternary alloys (Cu-Ni-Zr) under the same mechanical milling and hot pressing conditions. The samples were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM); the mechanical properties were studied by compression tests and hardness in Vickers scale (HV0.5) on polished surfaces at room temperature. According to XRD results, hot pressing process crystallite size increase and microstrain decreases in the compact samples due to the release of crystalline defects. The compacted samples have porosity of approximately 20%. The milling powder samples have a higher hardness than the unmilled samples, this because during milling crystal defects are incorporated together with the microstructural refinement. Ternary alloy is the one with the highest hardness of all systems studied, reaching 689 HV0.5. In compression tests determined a strain 5 %, Zr-containing samples become more fragile presenting the lowest values of compressive strength. In contrast, samples of Ni and Cu-Ni binary alloy are more resistant to compression.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buchanan, W.H., Liu, R.A., , C.T. et al. ., Intermetallics. 10, 1157 (2002).Google Scholar
Suryanarayana, C., Int. Mater. Rev. 40, 41 (1995).CrossRefGoogle Scholar
Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
Masumura, R.A., Hazzledine, P.M., Pande, C.S., Acta Mater. 46, 4527 (1998).CrossRefGoogle Scholar
Farhat, Z.N., Ding, Y., Northwood, D.O., Alpas, A.T., Mater. Sci. Eng. A 206, 302 (1996).CrossRefGoogle Scholar
Jeong, D.H., Gonzalez, F., Palumbo, G., Aust, K.T., Erb, U., Scripta Mater. 44, 493 (2001).CrossRefGoogle Scholar
Clement, W., Willens, R.H., Duwez, P., Nature 187, 869 (1960).CrossRefGoogle Scholar
Kawashima, A., Ohmura, K., Yokoyama, Y., Inoue, A., Corros. Sci. 53, 2778 (2011).CrossRefGoogle Scholar
Wang, W.H., Dong, C., Shek, C.H., Mater. Sci. Eng. A 44, 45 (2004).CrossRefGoogle Scholar
Schuh, C. A., Hufnagel, T. C., Ramamurty, U., Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
Inoue, A., Wang, X.M, Zhang, W., Rev. Adv. Mater. Sci. 18, 1 (2008).Google Scholar
Martínez, C., Ordoñez, S., Guzmán, D., Serafini, D., Iturriza, I., Bustos, O., J. Alloy Compd. 580, 241(2013).CrossRefGoogle Scholar
Martínez, C., Ordoñez, S., Serafini, D., Guzmán, D., Rojas, P.A., J. Alloy Compd. 590, 469 (2014).CrossRefGoogle Scholar
Zhang, D.L., Prog. Mater. Sci. 49, 537 (2004).CrossRefGoogle Scholar
Suryanarayana, C., Prog. Mater. Sci. 46, 1 (2001).CrossRefGoogle Scholar
Shengzhong, K., Liu, F., Yutian, D., Guangji, X., Zongfu, D., Peiqing, L., Intermetallics, 12, 1115 (2004).CrossRefGoogle Scholar
Eckert, J., Mater. Sci. Eng. A. 226, 364 (1997).CrossRefGoogle Scholar
Kim, H.J., Lee, J.K., Shin, S.Y., et al. , Intermetallics 12, 1109 (2004).CrossRefGoogle Scholar
Rojas, P.A., Peñaloza, A., Wörner, C.H., Fernández, R., Zúñiga, A., J. Alloy Compd. 425, 334 (2006).CrossRefGoogle Scholar
Rojas, P. A., Álvarez, M. P, Peñaloza, A., Zúñiga, A., Ordoñez, S., Rev. Metal. Madrid. 45, 165 (2009).CrossRefGoogle Scholar
Aguilar, C., Rojas, P.A., Ordoñez, S., Guzmán, D., Rev. Materia. 14, 777 (2009).CrossRefGoogle Scholar
Aguilar, C., Ordoñez, S., Guzmán, D., Rojas, P.A., J. Alloy Compd. 504, 102 (2010).CrossRefGoogle Scholar
Aguilar, C., Rojas, P.A., Ordoñez, S., Guzmán, D., Acta Crystallogr. A 66, 154 (2010).CrossRefGoogle Scholar
Aguilar, C., Guzmán, D., Rojas, P.A., Ordoñez, S., Ríos, R., Mater. Chem. Phys. 128, 539 (2011).CrossRefGoogle Scholar
Martínez, C., Rojas, P., Aguilar, C., Guzmán, D., Zelaya, E., Rev. Materia 20, 621 (2015).CrossRefGoogle Scholar
Rojas, P., Martínez, C., Viancos, F., Aguilar, C., Guzmán, D., Zelaya, E., Rev. Materia 20, 705 (2015).CrossRefGoogle Scholar
Williamson, G. K., Hall, W.H., Acta. Metall. 1, 22 (1953).CrossRefGoogle Scholar
Ungár, T., Borbély, A., Appl. Phys. Lett. 69, 3173 (1996).CrossRefGoogle Scholar
Carturan, G., Mater. Lett. 7, 47 (1988).CrossRefGoogle Scholar
Lahiri, A., Das, R., Reddy, R. G., J. Power Sources, 195, 1688 (2010).CrossRefGoogle Scholar
Nazari, A., Zakeri, M., Ceram. Inter. 39, 1587 (2013).CrossRefGoogle Scholar
Brandstetter, S., Derlet, P.M., Van Petegem, S., Van Swygenhoven, H., Acta Mater. 56, 166 (2008).CrossRefGoogle Scholar
Eckert, J., Das, J., Kim, K.B., Baier, F., Tang, M.B., Wang, W.H., Zhang, Z.F., Intermetallics, 14, 876 (2006).CrossRefGoogle Scholar