Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-02T17:20:35.475Z Has data issue: false hasContentIssue false

Modelling of Multilayer Perforated Electrodes for Dielectric Elastomer Actuator Applications

Published online by Cambridge University Press:  16 April 2020

Seshadri Reddy Nagireddy
Affiliation:
Center for VLSI and Embedded System Technologies (CVEST), International Institute of Information Technology (IIIT) Hyderabad, Telangana-500032, India.
Karnati Kumar Sai Charan
Affiliation:
Center for VLSI and Embedded System Technologies (CVEST), International Institute of Information Technology (IIIT) Hyderabad, Telangana-500032, India.
Rishabh Bhooshan Mishra
Affiliation:
Center for VLSI and Embedded System Technologies (CVEST), International Institute of Information Technology (IIIT) Hyderabad, Telangana-500032, India.
Aftab M. Hussain*
Affiliation:
Center for VLSI and Embedded System Technologies (CVEST), International Institute of Information Technology (IIIT) Hyderabad, Telangana-500032, India.
Get access

Abstract

Dielectric elastomer actuators (DEAs), which are inherently complaint capacitors, are emerging as pseudo-muscular actuators with a wide range of applications. In order to achieve high stretchability for large DEA actuation, carbon nanotube (CNT) and other 1D materials-based electrodes are used to maintain conductance at large strains. These electrodes are typically fabricated using spray coating or filter transfer method and resemble a perforated electrode under high magnification. Hence, there can be a loss of field and stray capacitance when multiple layers of carbon nanotubes (CNTs)-based electrodes are used. This study investigates the effect of microscopic perforations on the nature of electric fields and on the capacitance of multi-layered CNT-based DEA structures with various dimensions and geometric properties of the electrodes. It has been found that the capacitance decreases with increase in the perforations however its effect is limited for a reasonable coverage. The change in normalized is found to be negligible (∼5%) for an electrode coverage area of over 90%, however, the maximum output work reduces by 18.2%. This analysis is important to develop robust and reliable CNT-based DEA structures, without using excessive CNTs which can lead to increased mechanical stiffness of the electrodes.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shian, S., Bertoldi, K., and Clarke, D. R., Adv. Mater. 27 ,6814 (2015).CrossRefGoogle Scholar
Zhao, H., Hussain, A. M., Duduta, M., Vogt, D. M., Wood, R. J., and Clarke, D. R., Adv. Funct. Mater. 28 ,1804328 (2018).CrossRefGoogle Scholar
Pei, Q., Pelrine, R., Stanford, S., Kornbluh, R., and Rosenthal, M., Synth. Met. 135 ,129 (2003).CrossRefGoogle Scholar
Anderson, I. A., Gisby, T. A., McKay, T. G., O’Brien, B. M., and Calius, E. P., J. Appl. Phys. 112 ,041101 (2012).CrossRefGoogle Scholar
Löwe, C., Zhang, X., and Kovacs, G., Adv. Eng. Mater. 7 ,361 (2005).CrossRefGoogle Scholar
Bar-Cohen, Y., J. Spacecr. Rockets 39 ,822 (2002).CrossRefGoogle Scholar
Scrosati, B., Applications of electroactive polymers, (Springer, 1993) pp. 127-128.CrossRefGoogle Scholar
Carpi, F., Chiarelli, P., Mazzoldi, A., and De Rossi, D., Sens. Actuators A 107 ,85 (2003).CrossRefGoogle Scholar
Hussain, A. M. and Hussain, M. M., Adv. Mater. 28 ,4219 (2016).CrossRefGoogle Scholar
Hussain, A. M., Lizardo, E. B., Torres Sevilla, G. A., Nassar, J. M., and Hussain, M. M., Adv. Healthcare Mater. 4 ,665 (2015).CrossRefGoogle Scholar
Iijima, S. and Ichihashi, T., Nature 363 ,603 (1993).CrossRefGoogle Scholar
Dresselhaus, M. S., Dresselhaus, G., Saito, R., and Jorio, A., Phys. Rep. 409 ,47 (2005).CrossRefGoogle Scholar
De Volder, M. F., Tawfick, S. H., Baughman, R. H., and Hart, A. J., Science 339 ,535 (2013).CrossRefGoogle Scholar
Kornbluh, R., Pelrine, R., Carpi, F., De Rossi, D., and Sommer-Larsen, P., "High-performance acrylic and silicone elastomers," Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology , ed. Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P. (Elsevier, 2008) pp. 33-42.CrossRefGoogle Scholar
Araromi, O., Conn, A., Ling, C., Rossiter, J., Vaidyanathan, R., and Burgess, S., Sens. Actuators A 167 ,459 (2011).CrossRefGoogle Scholar
Nagireddy, S. R., Mishra, R. B., Karnati, K. S. C., and Hussain, A. M., in IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India), (Hyderabad, India, 2019), pp. 34-38.CrossRefGoogle Scholar
Grosser, J. and Schulz, H., J. Phys. D: Appl. Phys. 22 ,723 (1989).CrossRefGoogle Scholar
O’Halloran, A., O’Malley, F., and McHugh, P., J. Appl. Phys. 104 ,071101 (2008).CrossRefGoogle Scholar
Duduta, M., Wood, R. J., and Clarke, D. R., Adv. Mater. 28 ,8058 (2016).CrossRefGoogle Scholar