Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-14T09:36:45.087Z Has data issue: false hasContentIssue false

Self-Assembling 2D Nano-Crystalline of Recombinant Surface Layer Proteins (S-Layer) on Solid Substrates and Electrical Responses

Published online by Cambridge University Press:  16 January 2017

Rui Qing*
Affiliation:
Center for Bits and Atoms, MIT, Cambridge, MA 02139, USA
*
*(Email: ruiqing@mit.edu)
Get access

Abstract

S-layer proteins of various lattice-forming types are the most abundant protein by mass on earth. They form the outermost cell crystalline component in a broad range of bacteria and archaea. They are porous monomolecular layer with unit cell size in tens of nanometers. These monomer proteins are capable of forming self-assembled mono- or double layers. Isolated from cell surfaces or through recombinant protein production, they are able to form ordered 2D crystal lattice on a variety of non-cellular surfaces. We study S-layer SbpA protein, which is found in mesophilic organism Lysinibacillus sphaericus with square lattice crystallinity. The recombinant SbpA (rSbpA) can be genetically modified and expressed in E. coli in different truncated forms. Using both the wtSpbA and truncated rSbpA, we reproduced the unique two-dimensional self-assembly pattern on several solid or flexible surfaces of interests towards electronic devices. By surface modification we can promote the self-assembly of SbpA on low affinity substrates. This enables a potential mean of creating complex functional bio-nanostructure. Delicate control of the self-assembly processes of S-layer on surfaces also serves the prerequisite of building the supramolecular structure as bio-electronic platform through protein fusing. Understanding of the electrical response from s-layer proteins provides a bridge between biological systems and electronic devices. Scale-up production and understanding the detailed interaction of the S-layer interface will likely be useful for nanobiotechnology and synthetic biology.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sleytr, U.B., Schuster, B., Egelseer, E.M., Pum, D., Fems Microbiol Rev, 38 (2014).CrossRefGoogle Scholar
Pum, D., Toca-Herrera, J.L., Sleytr, U.B., Int J Mol Sci, 14 (2013).CrossRefGoogle Scholar
Sleytr, U.B., Schuster, B., Egelseer, E.M., Pum, D., Horejs, C.M., Tscheliessnig, R., Ilk, N., Prog Mol Biol Transl, 103 (2011).Google Scholar
Albers, S.V., Meyer, B.H., Nat Rev Microbiol, 9 (2011).CrossRefGoogle Scholar
Pavkov-Keller, T., Howorka, S., Keller, W., Prog Mol Biol Transl, 103 (2011).Google Scholar
Zhou, F., Sun, W., Ricardo, K.B., Wang, D., Shen, J., Yin, P., Liu, H.T., Acs Nano, 10 (2016).Google Scholar
Wei, B., Vhudzijena, M.K., Robaszewski, J., Yin, P., Jove-J Vis Exp, (2015).Google Scholar
Wei, B., Ong, L.L., Chen, J., Jaffe, A.S., Yin, P., Angew Chem Int Edit, 53 (2014).Google Scholar
Gradisar, H., Bozic, S., Doles, T., Vengust, D., Hafner-Bratkovic, I., Mertelj, A., Webb, B., Sali, A., Klavzar, S., Jerala, R., Nat Chem Biol, 9 (2013).CrossRefGoogle Scholar
Fletcher, J.M., Harniman, R.L., Barnes, F.R.H., Boyle, A.L., Collins, A., Mantell, J., Sharp, T.H., Antognozzi, M., Booth, P.J., Linden, N., Miles, M.J., Sessions, R.B., Verkade, P., Woolfson, D.N., Science, 340 (2013).CrossRefGoogle Scholar
Breitwieser, A., Egelseer, E.M., Moll, D., Ilk, N., Hotzy, C., Bohle, B., Ebner, C., Sleytr, U.B., Sara, M., Protein Eng, 15 (2002).CrossRefGoogle Scholar
Ebner, A., Kienberger, F., Huber, C., Kamruzzahan, A.S.M., Pastushenko, V.P., Tang, J.L., Kada, G., Gruber, H.J., Sleytr, U.B., Sara, M., Hinterdorfer, P., Chembiochem, 7 (2006).CrossRefGoogle Scholar
Ferner-Ortner-Bleckmann, J., Gelbmann, N., Tesarz, M., Egelseer, E.M., Sleytr, U.B., Small, 9 (2013).CrossRefGoogle Scholar
Chung, S., Shin, S.H., Bertozzi, C.R., De Yoreo, J.J., P Natl Acad Sci USA, 107 (2010).Google Scholar
Comolli, L.R., Siegerist, C.E., Shin, S.H., Bertozzi, C., Regan, W., Zettl, A., De Yoreo, J., Angew Chem Int Edit, 52 (2013).Google Scholar
Horejs, C., Gollner, H., Pum, D., Sleytr, U.B., Peterlik, H., Jungbauer, A., Tscheliessnig, R., Acs Nano, 5 (2011).CrossRefGoogle Scholar
Ilk, N., Vollenkle, C., Egelseer, E.M., Breitweiser, A., Sleytr, U.B., Sara, M., Appl Environ Microb, 68 (2002).CrossRefGoogle Scholar
Huber, C., Ilk, N., Runzler, D., Egelseer, E.M., Weigert, S., Sleytr, U.B., Sara, M., Mol Microbiol, 55 (2005).CrossRefGoogle Scholar
Egelseer, E.M., Ilk, N., Pum, D., Messner, P., Schäffer, C., Schuster, B., Sleytr, U.B., Flickinger, M.C., in Encyclopedia of Industrial Biotechnology (John Wiley & Sons, Inc.,Hoboken, 2009) p.1 Google Scholar
Ilk, N., Egelseer, E.M., Sleytr, U.B., Curr Opin Biotech, 22 (2011).CrossRefGoogle Scholar
Norville, J.E., Kelly, D.F., Knight, T.F., Belcher, A.M., Walz, T., J Struct Biol, 160 (2007).CrossRefGoogle Scholar
Asuka, M., Sigmund, W.M., U.S. Patent Application US20140208982 (31 July 2014).Google Scholar
Shin, S.H., Chung, S., Sanii, B., Comolli, L.R., Bertozzi, C.R., De Yoreo, J.J., P Natl Acad Sci USA, 109 (2012).Google Scholar
Gyorvary, E., Schroedter, A., Talapin, D.V., Weller, H., Pum, D., Sleytr, U.B., J Nanosci Nnotechno, 4 (2004).Google Scholar
Moreno-Flores, S., Kasry, A., Butt, H.J., Vavilala, C., Schmittel, M., Pum, D., Sleytr, U.B., Toca-Herrera, J.L., Angew Chem Int Edit, 47 (2008).CrossRefGoogle Scholar