Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-03T21:55:10.460Z Has data issue: false hasContentIssue false

Textile Electronics – Prospects, Advances, Challenges and Opportunities

Published online by Cambridge University Press:  29 May 2020

Huda S. Badghaish
Affiliation:
mmh Labs, Electrical Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
Muhammad Mustafa Hussain
Affiliation:
mmh Labs, Electrical Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia EECS, University of California, Berkeley, California, USA
Get access

Abstract

The field of textile electronics aims to use clothing materials and fabrics as an active or activated substrate for electronics. This is an intriguing idea for researchers, however, the field comes with its own challenges and design requirements. A textile electronic system should be functional, reliable, safe and affordable while maintaining the original utility of the fabric. This review paper presents a comprehensive picture of prospects, advances, challenges and opportunities of textile electronics. It also offers a critical outlook to advance the field for technology translation.

Type
Review Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Edmison, J., Lehn, D., Jones, M. and Martin, T., International Workshop On Wearable And Implantable Body Sensor Networks (BSN'06), 4 (2016).Google Scholar
Curone, D., Secco, E., Tognetti, A., Loriga, G., Dudnik, G., Risatti, M., Whyte, R., Bonfiglio, A. and Magenes, G., IEEE Transactions On Information Technology In Biomedicine 14, 694 (2010).Google Scholar
Hsu, P., Shen, C., Chen, F., Huang, H., Wang, W. and Huang, T., 2018 International Flexible Electronics Technology Conference (IFETC), 1 (2018).Google Scholar
Paradiso, R., Loriga, G. and Taccini, N., IEEE Transactions On Information Technology In Biomedicine 9, 337 (2005).CrossRefGoogle Scholar
Ma, L., Wu, R., Patil, A., Zhu, S., Meng, Z., Meng, H., Hou, C., Zhang, Y., Liu, Q., Yu, R., Wang, J., Lin, N. and Liu, X., Advanced Functional Materials 29, 1904549 (2019).Google Scholar
Grethe, T., Borczyk, S., Plenkmann, K., Normann, M., Rabe, M. and Schwarz-Pfeiffer, A., 2018 Symposium On Design, Test, Integration & Packaging Of MEMS And MOEMS (DTIP), 1 (2018).Google Scholar
Lee, J., Shin, S., Lee, S., Song, J., Kang, S., Han, H., Kim, S., Kim, S., Seo, J., Kim, D. and Lee, T., ACS Nano 12, 4259 (2018).Google Scholar
Lee, J., Shin, S., Lee, S., Song, J., Kang, S., Han, H., Kim, S., Kim, S., Seo, J., Kim, D. and Lee, T., ACS Nano 12, 9634 (2018).Google Scholar
Hamdan, N., Heller, F., Wacharamanotham, C., Thar, J. and Borchers, J., Proceedings Of The 2016 CHI Conference Extended Abstracts On Human Factors In Computing Systems - CHI EA ’16, 2497 (2016).Google Scholar
Takamatsu, S., Lonjaret, T., Ismailova, E., Masuda, A., Itoh, T. and Malliaras, G., Advanced Materials 28, 4485 (2015).Google Scholar
Huang, W., Wang, Y., Hsu, P., Wang, W., Cavalier, A., Huang, T. and Shen, C., 2018 International Flexible Electronics Technology Conference (IFETC), 1 (2018).Google Scholar
Kuang, Ye, Yao, L., Zhang, W., Zhou, D., Luan, He and Qiu, Y., 2016 IEEE International Conference On RFID Technology And Applications (RFID-TA), 77 (2016).Google Scholar
Lee, D., Kim, H. and Lim, S., Microwave And Optical Technology Letters 59, 1424 (2017).Google Scholar
Lee, M., Hong, J., Lee, E., Yu, H., Kim, H., Lee, J., Lee, W. and Oh, J., Advanced Functional Materials 26, 1445 (2016).Google Scholar
Hamedi, M., Herlogsson, L., Crispin, X., Marcilla, R., Berggren, M. and Inganäs, O., Advanced Materials 21, 573 (2009).Google Scholar
Zhang, L. and Andrew, T., Advanced Electronic Materials 4, 1800271 (2018).Google Scholar
Allison, L. and Andrew, T., Advanced Materials Technologies 4, 1800615 (2019).CrossRefGoogle Scholar
Pang, S., Gao, Y. and Choi, S., Advanced Energy Materials 8, 1702261 (2017).Google Scholar
Qi, K., Hou, R., Zaman, S., Qiu, Y., Xia, B. and Duan, H., ACS Applied Materials & Interfaces 10, 18021 (2018).Google Scholar
Park, H., Kim, J., Hong, S., Lee, G., Lee, H., Song, C., Keum, K., Jeong, Y., Jin, S., Kim, D. and Ha, J., ACS Nano 13, 10469 (2019).Google Scholar
Yong, S., Shi, J. and Beeby, S., Energy Technology 7, 1800938 (2019).CrossRefGoogle Scholar
Venugopalan, V., Lamboll, R., Joshi, D. and Narayan, K., ACS Applied Materials & Interfaces 9, 28010 (2017).CrossRefGoogle Scholar
Ko, Y., Oh, J., Park, K., Kim, S., Huh, W., Sung, B., Lim, J., Lee, S. and Kim, H., ACS Applied Materials & Interfaces 11, 37043 (2019).Google Scholar
Yin, Z., Jian, M., Wang, C., Xia, K., Liu, Z., Wang, Q., Zhang, M., Wang, H., Liang, X., Liang, X., Long, Y., Yu, X. and Zhang, Y., Nano Letters 18, 7085 (2018).CrossRefGoogle Scholar
Guo, Y., Otley, M., Li, M., Zhang, X., Sinha, S., Treich, G. and Sotzing, G., ACS Applied Materials & Interfaces 8, 26998 (2016).Google Scholar
Puurtinen, M., Komulainen, S., Kauppinen, P., Malmivuo, J. and Hyttinen, J., 2006 International Conference Of The IEEE Engineering In Medicine And Biology Society, 6012 (2006).Google Scholar
Choi, B., Lee, J., Han, H., Woo, J., Park, K., Seo, J. and Lee, T., ACS Applied Materials & Interfaces 10, 36094 (2018).Google Scholar
Wang, C., Zhang, M., Xia, K., Gong, X., Wang, H., Yin, Z., Guan, B. and Zhang, Y., ACS Applied Materials & Interfaces 9, 13331 (2017).Google Scholar
Cataldi, P., Ceseracciu, L., Athanassiou, A. and Bayer, I., ACS Applied Materials & Interfaces 9, 13825 (2017).CrossRefGoogle Scholar
Sala de Medeiros, M., Chanci, D., Moreno, C., Goswami, D. and Martinez, R., Advanced Functional Materials 29, 1904350 (2019).Google Scholar