Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-21T12:13:50.975Z Has data issue: false hasContentIssue false

Transferring Microelectromechanical Devices to Breathable Fabric Carriers with Strain-Engineered Grippers

Published online by Cambridge University Press:  01 February 2019

Sushmita Challa
Affiliation:
University of Louisville J.B. Speed School of Engineering, 2210 S Brook St, Louisville, KY40208, U.S.A.
Canisha Ternival
Affiliation:
University of Florida
Shafquatul Islam
Affiliation:
University of Louisville J.B. Speed School of Engineering, 2210 S Brook St, Louisville, KY40208, U.S.A.
Jasmin Beharic
Affiliation:
University of Louisville J.B. Speed School of Engineering, 2210 S Brook St, Louisville, KY40208, U.S.A.
Cindy Harnett*
Affiliation:
University of Louisville J.B. Speed School of Engineering, 2210 S Brook St, Louisville, KY40208, U.S.A.
Get access

Abstract

Stretchable electronics fabrication generally relies on fine-tuning adhesion forces, putting some restrictions on what the carrier layer can be. In contrast to adhesion, mechanical tangling makes more kinds of carrier materials available. Antibacterial, conductive, heat-responsive and other functions can be brought in by fiber networks as long as they are compatible with the highly selective silicon etch process. Mechanical grippers can also bring electronic contacts from one side of a mesh to the other, which is difficult to do on continuous thin films of other soft materials like silicone or polyimide. Our solution uses mechanical strain to produce large arrays of redundant grippers from planar thin-film designs.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Koh, A., et al. , Sci. Transl. Med. 8 (366), 366ra165 (2016)CrossRefGoogle Scholar
Rogers, J.A., Someya, T., and Huang, Y., Science 327 (5973), 1603 (2010)CrossRefGoogle Scholar
Popular Embroidery Techniques Used to Decorate Fabrics. Available at: http://nanetteparker.hubpages.com/hub/Popular-Embroidery-Techniques-Used-to-Decorate-Fabrics (accessed 26 September 2018).Google Scholar
Creative Sewing. Available at: http://www.creativesewing.co.nz/ (accessed 26 September 2018).Google Scholar
Loominous. Available at: http://www.loominous.co.uk/studio.html (accessed 26 September 2018).Google Scholar
Cornell University: Fabrics of Our Livelihoods. Available at: http://smallfarms.cornell.edu/2011/07/04/fabrics-of-our-livelihoods/ (accessed 26 September 2018).Google Scholar
Textile Innovation Knowledge Platform. Available at: http://www.tikp.co.uk/knowledge/technology/coating-and-laminating/laminating (accessed 26 September 2018).Google Scholar
Custom Fabric Printing. Available at: http://sophiasdecor.blogspot.it/2012/09/insidespoonflower-custom-fabric.html (accessed 26 September 2018).Google Scholar
Durable water repellent. Available at: http://en.wikipedia.org/wiki/Durable_water_repellent (accessed 26 September 2018).Google Scholar
Bozhi, T., et al. , Nat. Mater. 11 (11), 986 (2012)Google Scholar
Bishop, D., Pardo, F., Bolle, C., Giles, R. and Aksyuk, V., J. Low. Temp. Phys. 169(5–6), 386 (2012)CrossRefGoogle Scholar
Ahn, B.Y., Duoss, E.B., Motala, M.J., Guo, X., Park, S.L., Xiong, Y., Yoon, J., Nazzo, R.G., Rogers, J.A. and Lewis, J.A., Science 323 (5921), 1590 (2009)CrossRefGoogle Scholar
Gagler, R., Bugacov, A., Koel, B.E. and Will, P.M., J. Micromech. Microeng. 18 (5), 055025 (2008)CrossRefGoogle Scholar
Gimi, B., Leong, T., Gu, Z., Yang, M., Artemov, D., Bhujwalla, Z.M. and Gracias, D.H., Biomed. Microdevices 7 (4), 341 (2005)CrossRefGoogle Scholar
Fernandes, R. and Gracias, D.H., Adv. Drug Deliv. Rev. 64 (14), 1579 (2012)CrossRefGoogle Scholar
Leong, T.G., Lester, P.A., Koh, T.L., Call, E.K. and Gracias, D.H., Langmuir. 23 (17), 8747 (2007)CrossRefGoogle Scholar
Cho, J.H., Azam, A. and Gracias, D.H., Langmuir. 26 (21), 16534 (2010)CrossRefGoogle Scholar
Randhawa, J.S., Gurbani, S.S., Keung, M.D., Demers, D.P., Leahy-Hoppa, M.R. and Gracias, D.H., Appl. Phys. Lett. 96 (19), 191108 (2010)CrossRefGoogle Scholar
Cho, J.H., Keung, M.D., Verellen, N., Lagae, L., Moshchalkov, V.V., Van Dorpe, P. and Gracias, D.H., Small. 7 (14), 1943 (2011)CrossRefGoogle Scholar
Breger, J.C., Yoon, C., Xiao, R., Kwag, H.R., Wang, M.O., Fisher, J.P., Nguyen, T.D. and Gracias, D.H., ACS Appl. Mater. Interfaces. 7 (5), 3398 (2015)CrossRefGoogle Scholar
Shenoy, V.B. and Gracias, D.H., MRS Bulletin. 37 (09), 847 (2012)CrossRefGoogle Scholar
Malachowski, K., Jamal, M., Jin, Q., Polat, B., Morris, C.J. and Gracias, D.H., Nano Lett. 14 (7), 4164 (2014)CrossRefGoogle Scholar
Prinz, V. Ya., Seleznev, V.A., Gutakovsky, A.K., Chehovskiy, A.V., Preobrazhenskii, V.V., Putyato, M.A. and Gavrilova, T.A., Physica E 6 (1), 828 (2000)CrossRefGoogle Scholar
Schmidt, O.G. and Eberl, K., Nature 410 (6825), 168 (2001)CrossRefGoogle Scholar
Huang, M.N., Boone, L., Roberts, M., Savage, D.E., Lagally, M.G., Shaji, N., Qiu, H., Blick, R., Nairn, J.A. and Liu, F., Adv. Mater. 17 (23), 2860 (2005)CrossRefGoogle Scholar
Schmidt, O.G. and Jin-Phillipp, N.Y., Appl. Phys. Lett. 78, 3310 (2001)CrossRefGoogle Scholar
O Vaccaro, P., Kubota, K. and Aida, T., Appl. Phys. Lett. 78, 2852 (2001)CrossRefGoogle Scholar
Moiseeva, E., Senousy, Y. M., McNamara, S., and Harnett, C. K., J. Micromech. Microeng. 17 (9), N63 (2007)CrossRefGoogle Scholar
Malkinski, L. and Rahmatollah, E., Magnetic Materials (InTech, 2016), pp.223-248, Retrieved from intechopenGoogle Scholar
Chang, F. I., Yeh, R., Lin, G., Chu, P.B., Hoffman, E. G., Kruglick, E. J., Pister, K. S. J., and Hecht, M. H., Proc. SPIE 2641, pp. 117-129 (1995)CrossRefGoogle Scholar